|
On the Existence of Expanding Attractors with Different Dimensions
Vladislav S. Medvedev, Evgeny V. Zhuzhoma National Research University Higher School of Economics,
ul. Bolshaya Pecherskaya 25/12, 603005 Nizhny Novgorod, Russia
Аннотация:
We prove that an n-sphere Sn, n⩾2, admits structurally stable diffeomorphisms Sn→Sn with nonorientable expanding attractors of any topological dimension d∈{1,…,[n2]} where [x] is the integer part of x. In addition, any n-sphere Sn, n⩾3, admits axiom A diffeomorphisms Sn→Sn with orientable expanding attractors of any topological dimension d∈{1,…,[n3]}. We prove that an n-torus Tn, n⩾2, admits structurally stable diffeomorphisms Tn→Tn with orientable expanding attractors of any topological dimension d∈{1,…,n−1}. We also prove that, given any closed n-manifold Mn, n⩾2, and any d∈{1,…,[n2]}, there is an axiom A diffeomorphism f:Mn→Mn with a d-dimensional nonorientable expanding attractor. Similar statements hold for axiom A flows.
Ключевые слова:
axiom A systems, basic set, expanding attractor
Поступила в редакцию: 26.07.2024 Принята в печать: 22.11.2024
Образец цитирования:
Vladislav S. Medvedev, Evgeny V. Zhuzhoma, “On the Existence of Expanding Attractors with Different Dimensions”, Regul. Chaotic Dyn., 30:1 (2025), 93–102
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1298 https://www.mathnet.ru/rus/rcd/v30/i1/p93
|
Статистика просмотров: |
Страница аннотации: | 7 | Список литературы: | 2 |
|