Аннотация:
Let $M^n$, $n\geqslant 3$, be a closed orientable $n$-manifold and $\mathbb{G}(M^n)$ the set of $\mathrm{A}$-diffeomorphisms $f: M^n\to M^n$ whose nonwandering set satisfies the following conditions:
$(1)$ each nontrivial basic set of the nonwandering set is either an orientable codimension one expanding attractor or an orientable codimension one contracting repeller;
$(2)$ the invariant manifolds of isolated saddle periodic points intersect transversally and codimension one separatrices of such points can intersect only one-dimensional separatrices of other isolated periodic orbits.
We prove that the ambient manifold $M^n$ is homeomorphic to either the sphere $\mathbb S^n$ or
the connected sum of $k_f \geqslant 0$ copies of the torus
$\mathbb T^n$, $\eta_f\geqslant 0$ copies of $\mathbb S^{n-1}\times \mathbb S^1$ and $l_f\geqslant 0$
simply connected manifolds $N^n_1, \dots, N^n_{l_f}$ which are not homeomorphic to the sphere.
Here $k_f\geqslant 0$ is the number of connected components of all nontrivial basic sets, $\eta_{f}=\frac{\kappa_f}{2} -k_f+\frac{\nu_f - \mu_f +2}{2},$
$ \kappa_f\geqslant 0$ is the number of bunches of all nontrivial basic sets, $\mu_f\geqslant 0$ is the number of sinks and sources, $\nu_f\geqslant 0$ is the number of isolated saddle periodic points with Morse index
$1$ or $n-1$, $0\leqslant l_f\leqslant \lambda_f$, $\lambda_f\geqslant 0$ is the number of all periodic points whose Morse index does not belong to the set $\{0,1,n-1,n\}$ of diffeomorphism $f$. Similar statements hold for gradient-like flows on $M^n$. In this case there are no
nontrivial basic sets in the nonwandering set of a flow. As an application, we get sufficient
conditions for the existence of heteroclinic intersections and periodic trajectories for Morse – Smale flows.
Ключевые слова:
Decomposition of manifolds, axiom A systems, Morse – Smale systems, heteroclinic
intersections.
This work was supported by the Russian Science Foundation under grant 22-11-00027, except
Theorem 2 supported by the Laboratory of Dynamical Systems and Applications of the National
Research University Higher School of Economics, and by the Ministry of Science and Higher
Education of the Russian Federation under grant 075-15-2019-1931.
Поступила в редакцию: 31.05.2022 Принята в печать: 22.10.2022
Образец цитирования:
Vyacheslav Z. Grines, Vladislav S. Medvedev, Evgeny V. Zhuzhoma, “On the Topological Structure of Manifolds Supporting Axiom A Systems”, Regul. Chaotic Dyn., 27:6 (2022), 613–628
\RBibitem{GriMedZhu22}
\by Vyacheslav Z. Grines, Vladislav S. Medvedev, Evgeny V. Zhuzhoma
\paper On the Topological Structure of Manifolds Supporting Axiom A Systems
\jour Regul. Chaotic Dyn.
\yr 2022
\vol 27
\issue 6
\pages 613--628
\mathnet{http://mi.mathnet.ru/rcd1183}
\crossref{https://doi.org/10.1134/S1560354722060028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4519669}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1183
https://www.mathnet.ru/rus/rcd/v27/i6/p613
Эта публикация цитируется в следующих 3 статьяx:
Vyacheslav Z. Grines, Vladislav S. Medvedev, Evgeny V. Zhuzhoma, “Classification of Axiom A Diffeomorphisms with Orientable Codimension One Expanding Attractors and Contracting Repellers”, Regul. Chaotic Dyn., 29:1 (2024), 143–155
E.Y. Gurevich, I.A. Saraev, “On Morse–Smale diffeomorphisms on simply connected manifolds”, Partial Differential Equations in Applied Mathematics, 11 (2024), 100759
В. З. Гринес, Е. В. Жужома, В. С. Медведев, “О диффеоморфизмах с ориентируемыми базисными множествами коразмерности 1 и изолированным седлом”, Математические аспекты механики, Сборник статей. К 60-летию академика Дмитрия Валерьевича Трещева и 70-летию члена-корреспондента РАН Сергея Владимировича Болотина, Труды МИАН, 327, МИАН, М., 2024, 63–78; V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “On Diffeomorphisms with Orientable Codimension 1 Basic Sets and an Isolated Saddle”, Proc. Steklov Inst. Math., 327 (2024), 55–69