Аннотация:
We consider the 2D Schrödinger equation with variable potential in the narrow domain diffeomorphic to the wedge with the Dirichlet boundary condition. The corresponding classical problem is the billiard in this domain. In general, the corresponding dynamical system is not integrable. The small angle is a small parameter which allows one to make the averaging and reduce the classical dynamical system to an integrable one modulo exponential small correction. We use the quantum adiabatic approximation (operator separation of variables) to construct the asymptotic eigenfunctions (quasi-modes) of the Schröodinger operator. We discuss the relation between classical averaging and constructed quasi-modes. The behavior of quasi-modes in the neighborhood of the cusp is studied. We also discuss the relation between Bessel and Airy functions that follows from different representations of asymptotics near the cusp.
Ключевые слова:
potential well, stationary Schrödinger equation, KAM theory, operator separation of variables, semiclassical asymptotics, Airy function, Bessel function.
Образец цитирования:
Sergei Yu. Dobrokhotov, Dmitrii S. Minenkov, Anatoly I. Neishtadt, Semen B. Shlosman, “Classical and Quantum Dynamics of a Particle in a Narrow Angle”, Regul. Chaotic Dyn., 24:6 (2019), 704–716
\RBibitem{DobMinNei19}
\by Sergei Yu. Dobrokhotov, Dmitrii S. Minenkov, Anatoly I. Neishtadt, Semen B. Shlosman
\paper Classical and Quantum Dynamics of a Particle in a Narrow Angle
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 6
\pages 704--716
\mathnet{http://mi.mathnet.ru/rcd1034}
\crossref{https://doi.org/10.1134/S156035471906008X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511339400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85076337098}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1034
https://www.mathnet.ru/rus/rcd/v24/i6/p704
Эта публикация цитируется в следующих 2 статьяx:
D.S. Minenkov, S.A. Sergeev, “Asymptotics of the Whispering Gallery-Type in the Eigenproblem for the Laplacian in a Domain of Revolution Diffeomorphic To a Solid Torus”, Russ. J. Math. Phys., 30:4 (2023), 599
В. А. Сергеев, А. А. Федотов, “О делокализации квантовой частицы
при адиабатической эволюции,
порожденной одномерным оператором Шрёдингера”, Матем. заметки, 112:5 (2022), 752–769; V. A. Sergeev, A. A. Fedotov, “On the Delocalization of a Quantum Particle under the Adiabatic Evolution Generated by a One-Dimensional Schrödinger Operator”, Math. Notes, 112:5 (2022), 726–740