Аннотация:
The left-invariant sub-Riemannian problem with the growth vector (2, 3, 5, 8) is considered. A two-parameter group of infinitesimal symmetries consisting of rotations and dilations is described. The abnormal geodesic flow is factorized modulo the group of symmetries. A parameterization of the vertical part of abnormal geodesic flow is obtained.
The work of Yu. L. Sachkov and E. F. Sachkova was supported by the Russian Science Foundation under
grant 17-11-01387 and performed at the Ailamazyan Program Systems Institute of the Russian Academy
of Sciences.
Поступила в редакцию: 30.05.2019 Принята в печать: 01.10.2019
Образец цитирования:
Yu. L. Sachkov, E. F. Sachkova, “Symmetries and Parameterization of Abnormal Extremals in the Sub-Riemannian Problem with the Growth Vector (2, 3, 5, 8)”, Rus. J. Nonlin. Dyn., 15:4 (2019), 577–585
\RBibitem{SacSac19}
\by Yu. L. Sachkov, E. F. Sachkova
\paper Symmetries and Parameterization of Abnormal Extremals in the Sub-Riemannian Problem with the Growth Vector (2, 3, 5, 8)
\jour Rus. J. Nonlin. Dyn.
\yr 2019
\vol 15
\issue 4
\pages 577--585
\mathnet{http://mi.mathnet.ru/nd685}
\crossref{https://doi.org/10.20537/nd190417}
\elib{https://elibrary.ru/item.asp?id=43292204}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085143781}