Аннотация:
Very wide-bandgap undoped and Y2O3-doped ZrO2 nanoparticles were synthetized and their structural, optical, morphological and energy characteristics were investigated. It was found that the bandgap value in ZrO2 decreases with Y2O3 doping. The developed materials were used for fabrication of nanostructured photoelectrodes for perovskite solar cells (PSCs) with the architecture of glass/FTO/ZrO2-Y2O3/CH3NH3PbI3/spiro-MeOTAD/Au. The power conversion efficiency in the PSCs based on ZrO2-Y2O3 photoelectrodes was significantly higher than that for undoped ZrO2 photoelectrodes. We have found that nanostructured layers, based on very wide-bandgap materials could efficiently transfer the injected electrons via a hopping transport mechanism.
Ключевые слова:
nanostructures, ZrO2, thin films, semiconductors, solar photovoltaics, perovskite solar cells.
This work was supported by the Russian Science Foundation under grant No. 17-19-01776.
Поступила в редакцию: 10.11.2018 Исправленный вариант: 18.01.2019
Реферативные базы данных:
Тип публикации:
Статья
PACS:73.63.Bd
Язык публикации: английский
Образец цитирования:
L. L. Larina, O. V. Alexeeva, O. V. Almjasheva, V. V. Gusarov, S. S. Kozlov, A. B. Nikolskaia, M. F. Vildanova, O. I. Shevaleevskiy, “Very wide-bandgap nanostructured metal oxide materials for perovskite solar cells”, Наносистемы: физика, химия, математика, 10:1 (2019), 70–75
\RBibitem{LarAleAlm19}
\by L.~L.~Larina, O.~V.~Alexeeva, O.~V.~Almjasheva, V.~V.~Gusarov, S.~S.~Kozlov, A.~B.~Nikolskaia, M.~F.~Vildanova, O.~I.~Shevaleevskiy
\paper Very wide-bandgap nanostructured metal oxide materials for perovskite solar cells
\jour Наносистемы: физика, химия, математика
\yr 2019
\vol 10
\issue 1
\pages 70--75
\mathnet{http://mi.mathnet.ru/nano417}
\crossref{https://doi.org/10.17586/2220-8054-2019-10-1-70-75}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000459767800008}
\elib{https://elibrary.ru/item.asp?id=37035519}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nano417
https://www.mathnet.ru/rus/nano/v10/i1/p70
Эта публикация цитируется в следующих 6 статьяx:
Dawid Falkowski, Jakub Brzeski, Alicja Mikolajczyk, Piotr Skurski, “Reversed Stability of Zirconium Oxide Dimer Isomers Triggered by Electron Gain or Removal”, Inorg. Chem., 2025
Zahra Golshani, Shahab Maghsoudi, Seyed Mohammad Ali Hosseini, “Enhancement of the photovoltaic performance of HTL-free-perovskite solar cells based on carbon electrode via the modification of electron transport layer with Copper oxide@Polyaniline nanocomposite”, Energy Reports, 8 (2022), 13596
M. I. Fedorova, Yu. A. Zakhodyaeva, A. E. Baranchikov, V. A. Krenev, A. A. Voshkin, “Extraction Reprocessing of Fe,Ni-Containing Parts of Ni–MH Batteries”, Russ. J. Inorg. Chem., 66:2 (2021), 266
M. F. Vildanova, A. B. Nikolskaia, S. S. Kozlov, O. I. Shevaleevskiy, O. V. Almjasheva, V. V. Gusarov, “Group IV Oxides for Perovskite Solar Cells”, Dokl Phys Chem, 496:2 (2021), 13
E. I. Kopeychenko, I. Ya. Mittova, N. S. Perov, A. T. Nguyen, V. O. Mittova, Yu. A. Alekhina, I. V. Salmanov, “Nanocrystalline Heterogeneous Multiferroics Based on Yttrium Ferrite (Core) with Calcium Zirconate (Titanate) Shell”, Russ J Gen Chem, 90:6 (2020), 1030
M F Vildanova, A B Nikolskaia, S S Kozlov, O I Shevaleevskiy, “Charge transfer mechanisms in multistructured photoelectrodes for perovskite solar cells”, J. Phys.: Conf. Ser., 1697:1 (2020), 012187