Аннотация:
В этой статье получены критерии неопределенности матричной проблемы
моментов Стилтьеса. Найдены явные формулы для параметров Стилтьеса
и исследована мультипликативная структура резольвентной матрицы.
В неопределенном случае изучены аналитические свойства
резольвентной матрицы проблемы моментов. В терминах дробно-линейных
преобразований над стилтьесовскими парами дано описание множества всех
матриц-функций, ассоциированных с неопределенной проблемой
моментов Стилтьеса.
Библиография: 14 названий.
Jörn Zimmerling, Vladimir Druskin, Valeria Simoncini, “Monotonicity, Bounds and Acceleration of Block Gauss and Gauss–Radau Quadrature for Computing BTϕ(A)B”, J Sci Comput, 103:1 (2025)
Torsten Schröder-Zeiske, Bernd Fritzsche, Bernd Kirstein, Conrad Mädler, “A Potapov-Type Approach to a Particular Truncated Stieltjes Moment Problem in the Case of an Odd Number of Prescribed Matricial Moments”, Complex Anal. Oper. Theory, 18:3 (2024)
A. E. Choque-Rivero, B. E. Medina-Hernandez, “On the Resolvent Matrix of the Truncated Hausdorff Matrix Moment Problem”, Complex Anal. Oper. Theory, 18:3 (2024)
Abdon E. Choque-Rivero, Monika Winklmeier, “Explicit Relation Between Two Resolvent Matrices of the Truncated Hausdorff Matrix Moment Problem”, Complex Anal. Oper. Theory, 17:4 (2023)
Choque-Rivero A.E., “Three-Term Recurrence Relation Coefficients and Continued Fractions Related to Orthogonal Matrix Polynomials on the Finite Interval [a, B]”, Linear Multilinear Algebra, 70:4 (2022), 730–749
Druskin V., Mamonov V A., Zaslavsky M., “Distance Preserving Model Order Reduction of Graph-Laplacians and Cluster Analysis”, J. Sci. Comput., 90:1 (2022), 32
A. E. Choque-Rivero, B. E. Medina-Hernandez, “On two resolvent matrices of the truncated Hausdorff matrix moment problem”, MAMM, 2022, no. 95, 4
Zhan X., Dyachenko A., “On Generalization of Classical Hurwitz Stability Criteria For Matrix Polynomials”, J. Comput. Appl. Math., 383 (2021), 113113
Fritzsche B., Kirstein B., Maedler C., “A Schur-Nevanlinna Type Algorithm For the Truncated Matricial Hausdorff Moment Problem”, Complex Anal. Oper. Theory, 15:2 (2021), 25
Dyukarev Yu.M., “Entropy Functionals and Their Extremal Values For Solving the Stieltjes Matrix Moment Problem”, Methods Funct. Anal. Topol., 26:1 (2020), 27–38
Choque-Rivero A.E., Area I., “A Favard Type Theorem For Hurwitz Polynomials”, Discrete Contin. Dyn. Syst.-Ser. B, 25:2 (2020), 529–544
Bernd Fritzsche, Bernd Kirstein, Conrad Mädler, Operator Theory: Advances and Applications, 280, Complex Function Theory, Operator Theory, Schur Analysis and Systems Theory, 2020, 387
Borcea L., Druskin V., Mamonov V A., Zaslaysky M., “Robust Nonlinear Processing of Active Array Data in Inverse Scattering Via Truncated Reduced Order Models”, J. Comput. Phys., 381 (2019), 1–26
Choque Rivero A.E., Maedler C., “On Resolvent Matrix, Dyukarev-Stieltjes Parameters and Orthogonal Matrix Polynomials Via [0,Infinity)-Stieltjes Transformed Sequences”, Complex Anal. Oper. Theory, 13:1 (2019), 1–44
Абдон Е. Чоке-Риверо, “Резольвентная матрица усеченной матричной интерполяционной проблемы Неванлинны–Пика и ортогональные рациональные функции класса Стилтьеса”, Изв. вузов. Матем., 2019, № 6, 65–79; Abdon E. Choque-Rivero, “Resolvent matrix of the truncated Nevanlinna–Pick matrix interpolation problem via orthogonal rational functions in the Stieltjes class”, Russian Math. (Iz. VUZ), 63:6 (2019), 58–73
Choque-Rivero A.E., “The Matrix Toda Equations For Coefficients of a Matrix Three-Term Recurrence Relation”, Oper. Matrices, 13:4 (2019), 1125–1145
Fritzsche B., Kirstein B., Maedler C., Schroeder T., “On the Truncated Matricial Stieltjes Moment Problem M[[Alpha, Infinity); (&Itsj&It)(&Itj&It=0)&Itm&It, <=]”, Linear Alg. Appl., 544 (2018), 30–114
Ю. М. Дюкарев, “О нулях определителей матричнозначных многочленов, ортонормированных на полубесконечном или конечном интервале”, Матем. сб., 209:12 (2018), 75–86; Yu. M. Dyukarev, “The zeros of determinants of matrix-valued polynomials that are orthonormal on a semi-infinite or finite interval”, Sb. Math., 209:12 (2018), 1745–1755
Liliana Borcea, Vladimir Druskin, Alexander V Mamonov, Mikhail Zaslavsky, “Untangling the nonlinearity in inverse scattering with data-driven reduced order models”, Inverse Problems, 34:6 (2018), 065008