Аннотация:
Показано, что при (n−3)\arctg√abc∈(2π,4π) решение из W22(Ω) задачи Дирихле
Δ2u+a∂4u∂x4n=fвΩ;u=0,gradu=0на∂Ω,
где n⩾8, f∈C∞0(Ω), Ω – область в Rn с конической точкой 0∈∂Ω, может быть неограниченным в любой окрестности точки 0. Библиогр. 8 назв.
Образец цитирования:
В. Г. Мазья, С. А. Назаров, “Вершина конуса может быть нерегулярной по Винеру для эллиптического уравнения четвертого порядка”, Матем. заметки, 39:1 (1986), 24–28; Math. Notes, 39:1 (1986), 14–16
Hans-Christoph Grunau, Giulio Romani, Guido Sweers, “Differences between fundamental solutions of general higher order elliptic operators and of products of second order operators”, Math. Ann., 381:3-4 (2021), 1031
Ariel Barton, Svitlana Mayboroda, Association for Women in Mathematics Series, 4, Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 1), 2016, 55
Ariel Barton, Svitlana Mayboroda, Operator Theory: Advances and Applications, 236, Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, 2014, 53
Galaktionov, VA, “On regularity of a boundary point for higher-order parabolic equations: towards Petrovskii-type criterion by blow-up approach”, Nodea-Nonlinear Differential Equations and Applications, 16:5 (2009), 597
E.B. Davies, “Limits onLpRegularity of Self-Adjoint Elliptic Operators”, Journal of Differential Equations, 135:1 (1997), 83