Аннотация:
Рассматриваются случайные симметричные ленточные матрицы ΣN=(ξ(N)ij) размера N×N такие, что ξ(N)ij≡0, если |i−j|>bN. Ненулевые элементы
ξ(N)ij предполагаются независимыми (при i⩽j), причем Eξ(N)ij=0, E|ξ(N)ij|2=1, E|ξ(N)ij|p⩽cp<∞∀p∈N. После подходящей нормировки изучается (интегральная) плотность состояний, или предельная спектральная функция (при N→∞), при различных предположениях о росте ленточной ширины bN: 1) bN→∞, bN=o(N); 2) bN∽, 0<\rho<1; 3) b_N\equiv b=\operatorname{const}.
Библиогр. 17 назв.
Образец цитирования:
Л. В. Богачев, С. А. Молчанов, Л. А. Пастур, “О плотности состояний случайных ленточных матриц”, Матем. заметки, 50:6 (1991), 31–42; Math. Notes, 50:6 (1991), 1232–1242
Riccardo Catalano, Michael Fleermann, Werner Kirsch, “Random band and block matrices with correlated entries”, Electron. J. Probab., 29:none (2024)
M. Hernández-Sánchez, G. Tapia-Labra, J. A. Méndez-Bermúdez, “Non-Hermitian diluted banded random matrices: Scaling of eigenfunction and spectral properties”, Phys. Rev. E, 110:4 (2024)
Mariya Shcherbina, Tatyana Shcherbina, “Finite-Rank Complex Deformations of Random Band Matrices: Sigma-Model Approximation”, Z. mat. fiz. anal. geom., 19:1 (2023), 211
Peter D. Hislop, M. Krishna, “On the Local Eigenvalue Statistics for Random Band Matrices in the Localization Regime”, J Stat Phys, 187:3 (2022)
Indrajit Jana, “CLT for Non-Hermitian Random Band Matrices with Variance Profiles”, J Stat Phys, 187:2 (2022)
Tatyana Shcherbina, “SUSY transfer matrix approach for the real symmetric 1d random band matrices”, Electron. J. Probab., 27:none (2022)
Todd Kemp, David Zimmermann, “Random matrices with log-range correlations, and log-Sobolev inequalities”, Annales Mathématiques Blaise Pascal, 27:2 (2021), 207
Vishesh Jain, Indrajit Jana, Kyle Luh, Sean O'Rourke, “Circular law for random block band matrices with genuinely sublinear bandwidth”, Journal of Mathematical Physics, 62:8 (2021)
Bogdan Grechuk, Landscape of 21st Century Mathematics, 2021, 255
Benson Au, “Finite‐Rank Perturbations of Random Band Matrices via Infinitesimal Free Probability”, Comm Pure Appl Math, 74:9 (2021), 1855
Michael Fleermann, Werner Kirsch, Thomas Kriecherbauer, “The almost sure semicircle law for random band matrices with dependent entries”, Stochastic Processes and their Applications, 131 (2021), 172
Werner Kirsch, Thomas Kriecherbauer, “Random matrices with exchangeable entries”, Rev. Math. Phys., 32:07 (2020), 2050022
Benson Au, “Traffic distributions of random band matrices”, Electron. J. Probab., 23:none (2018)
Fritz Haake, Sven Gnutzmann, Marek Kuś, Springer Series in Synergetics, Quantum Signatures of Chaos, 2018, 303
Mariya Shcherbina, Tatyana Shcherbina, “Characteristic Polynomials for 1D Random Band Matrices from the Localization Side”, Commun. Math. Phys., 351:3 (2017), 1009
J A Méndez-Bermúdez, Guilherme Ferraz de Arruda, Francisco A Rodrigues, Yamir Moreno, “Diluted banded random matrices: scaling behavior of eigenfunction and spectral properties”, J. Phys. A: Math. Theor., 50:49 (2017), 495205
Yiting Li, Xin Sun, “On fluctuations for random band Toeplitz matrices”, Random Matrices: Theory Appl., 04:03 (2015), 1550012
Tatyana Shcherbina, “Universality of the second mixed moment of the characteristic polynomials of the 1D band matrices: Real symmetric case”, Journal of Mathematical Physics, 56:6 (2015)
Florent Benaych-Georges, Sandrine Péché, “Largest eigenvalues and eigenvectors of band or sparse random matrices”, Electron. Commun. Probab., 19:none (2014)
Dang-Zheng Liu, Zheng-Dong Wang, “Limit Distribution of Eigenvalues for Random Hankel and Toeplitz Band Matrices”, J Theor Probab, 24:4 (2011), 988