Аннотация:
Рассматривается задача минимизации невыпуклой функции с непрерывным по Липшицу градиентом на проксимально гладком подмножестве (которое может быть невыпуклым) в конечномерном евклидовом пространстве. Для градиентного отображения вводится условие ограничения ошибки (error bound condition) с показателем $\alpha\in (0,1]$. В случае выполнения этого условия доказывается, что стандартный метод проекции градиента сходится к решению задачи с линейной или сублинейной скоростью в зависимости от показателя $\alpha$. Работа носит теоретический характер.
Библиография: 23 названия.
Образец цитирования:
М. В. Балашов, “Метод проекции градиента для проксимально гладкого множества и функции с непрерывным по Липшицу градиентом”, Матем. сб., 211:4 (2020), 3–26; M. V. Balashov, “The gradient projection algorithm for a proximally smooth set and a function with Lipschitz continuous gradient”, Sb. Math., 211:4 (2020), 481–504