Аннотация:
We classify the finite-dimensional rational representations $V$ of the
exceptional algebraic groups $G$ with $\mathfrak g=\mathsf{Lie\,} G$ such that the symmetric
invariants of the semi-direct product $\mathfrak g\ltimes V\!$, where $V$ is an Abelian
ideal, form a polynomial ring.
Ключевые слова и фразы:
index of Lie algebra, coadjoint representation, symmetric invariants.
The research of the first author was carried out at the IITP RAS at the expense
of the Russian Foundation for Sciences (project №14–50–00150). The second
author is partially supported by Graduiertenkolleg GRK 1523 "Quanten- und
Gravitationsfelder".
Поступила в редакцию: 30.03.2017 Исправленный вариант: 30.04.2017
Образец цитирования:
D. I. Panyushev, O. S. Yakimova, “Symmetric invariants related to representations of exceptional simple
groups”, Тр. ММО, 78, no. 2, МЦНМО, М., 2017, 195–207; Trans. Moscow Math. Soc., 78 (2017), 161–170
\RBibitem{PanYak17}
\by D.~I.~Panyushev, O.~S.~Yakimova
\paper Symmetric invariants related to representations of exceptional simple
groups
\serial Тр. ММО
\yr 2017
\vol 78
\issue 2
\pages 195--207
\publ МЦНМО
\publaddr М.
\mathnet{http://mi.mathnet.ru/mmo597}
\elib{https://elibrary.ru/item.asp?id=37045061}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2017
\vol 78
\pages 161--170
\crossref{https://doi.org/10.1090/mosc/261}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85037662940}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mmo597
https://www.mathnet.ru/rus/mmo/v78/i2/p195
Эта публикация цитируется в следующих 3 статьяx:
Florence Fauquant-Millet, “Symmetric Semi-invariants for some Inönü-Wigner Contractions-I”, Transformation Groups, 2025
Dmitri I. Panyushev, Oksana S. Yakimova, Progress in Mathematics, 330, Representations and Nilpotent Orbits of Lie Algebraic Systems, 2019, 441
F. Fauquant-Millet, P. Lamprou, “Polynomiality for the Poisson centre of truncated maximal parabolic subalgebras”, J. Lie Theory, 28:4 (2018), 1063–1094