Аннотация:
Рассматривается развитие и применение метода учета заполненности прямоугольных ячеек материальной средой, в частности, жидкостью для повышения гладкости и точности конечноразностного решения задач гидродинамики со сложной формой граничной поверхности. Для исследования возможностей предлагаемого метода рассмотрены две задачи вычислительной гидродинамики — пространственно-двумерного течения вязкой жидкости между двумя соосными полуцилиндрами и пространственно-трехмерная задача волновой гидродинамики — распространения волны в прибрежной зоне и ее выхода на сушу. Для решения поставленных задач используются прямоугольные сетки, учитывающие заполненность ячеек. Аппроксимация задач по времени выполнена на основе схем расщепления по физическим процессам, а по пространственным переменным — на основе интегро-интерполяционного метода с учетом заполненности ячеек и без ее учета. Для оценки точности численного решения первой задачи в качестве эталона используется аналитическое решение, описывающее течение Куэтта–Тейлора. Моделирование производилось на последовательности сгущающихся расчетных сеток размерами: 11×21, 21×41, 41×81 и 81×161 узлов в случае применения метода и без его использования. В случае непосредственного использования прямоугольных сеток (ступенчатой аппроксимации границ) относительная погрешность расчетов достигает 70%; при тех же условиях использование предлагаемого метода позволяет уменьшить погрешность до 6%. Показано, что дробление прямоугольной сетки в 2–8 раз по каждому из пространственных направлений не приводит к такому же повышению точности, которой обладают численные решения, полученные с учетом заполненности ячеек.
Ключевые слова:
схемы расщепления по физическим процессам, течение Куэтта–Тейлора, погрешность численного решения.
Образец цитирования:
А. И. Сухинов, А. Е. Чистяков, Е. А. Проценко, В. В. Сидорякина, С. В. Проценко, “Метод учета заполненности ячеек для решения задач гидродинамики со сложной геометрией расчетной области”, Матем. моделирование, 31:8 (2019), 79–100; Math. Models Comput. Simul., 12:2 (2020), 232–245