Аннотация:
Temperature influences many aspects of cardiac excitation-contraction coupling, in particular, hypothermia increases the open probability (Popen) of cardiac sarcoplasmic reticulum (SR) Ca2+-release channels (ryanodine-sensitive RyR channels) rising the SR Ca2+ load in mammalian myocytes. However, to the best of our knowledge, no theoretical models are available for that effect. Traditional Markov chain models do not provide a reasonable molecular mechanistic insight on the origin of the temperature effects. Here in the paper we address a simple physically clear electron-conformational model to describe the RyR gating and argue that a synergetic effect of external thermal fluctuation forces (Gaussian–Markovian noise) and internal friction via the temperature stimulation/suppression of the open-close RyR tunneling probability can be considered as a main contributor to temperature effects on the RyR gating. Results of the computer modeling allowed us to successfully reproduce all the temperature effects observed for an isolated RyR gating in vitro under reducing the temperature: increase in Popen and mean open time without any significant effect on mean closed time.
Образец цитирования:
A. S. Moskvin, B. I. Iaparov, A. M. Ryvkin, O. E. Solovyova, V. S. Markhasin, “Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating”, Письма в ЖЭТФ, 102:1 (2015), 67–73; JETP Letters, 102:1 (2015), 62–68
\RBibitem{MosYapRyv15}
\by A.~S.~Moskvin, B.~I.~Iaparov, A.~M.~Ryvkin, O.~E.~Solovyova, V.~S.~Markhasin
\paper Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating
\jour Письма в ЖЭТФ
\yr 2015
\vol 102
\issue 1
\pages 67--73
\mathnet{http://mi.mathnet.ru/jetpl4678}
\crossref{https://doi.org/10.7868/S0370274X15130135}
\elib{https://elibrary.ru/item.asp?id=24156788}
\transl
\jour JETP Letters
\yr 2015
\vol 102
\issue 1
\pages 62--68
\crossref{https://doi.org/10.1134/S002136401513010X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000361487700013}
\elib{https://elibrary.ru/item.asp?id=24950092}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84941992031}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl4678
https://www.mathnet.ru/rus/jetpl/v102/i1/p67
Эта публикация цитируется в следующих 10 статьяx:
A. M. Ryvkin, N. S. Markov, V. Yudenko, J Evol Biochem Phys, 58:S1 (2022), S125
Averin A.S., Zakharova N.M., Tarlachkov V S., J. Evol. Biochem. Physiol., 57:4 (2021), 761–771
Nikita Markov, Alexander Ryvkin, 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 2020, 207
A. O. Okenov, B. I. Iaparov, A. S. Moskvin, Письма в ЖЭТФ, 110:3 (2019), 213–214; JETP Letters, 110:3 (2019), 231–236
N. M. Zorin, M. I. Shevchenko, A. S. Moskvin, BIOPHYSICS, 64:4 (2019), 639
A. S. Moskvin, Tech. Phys., 63:9 (2018), 1277–1287
Alexander Ryvkin, Nikita Markov, 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 2018, 107
A.O. Okenov, B.Ya. Iaparov, A.S. Moskvin, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, 7, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, 2018
B. I. Iaparov, A. S. Moskvin, O. E. Solovyova, International Conference PhysicA.SPb/2016, Journal of Physics Conference Series, 929, eds. N. Averkiev, S. Poniaev, G. Sokolovskii, IOP Publishing Ltd, 2017, UNSP 012019
A. S. Moskvin, B. I. Iaparov, A. M. Ryvkin, O. E. Solovyova, BIOPHYSICS, 61:4 (2016), 614