Аннотация:
We propose a way of making graphene superconductive by putting on it small superconductive islands which cover a tiny fraction of graphene area. We show that the critical temperature, Tc, can reach several Kelvins at the experimentally accessible range of parameters. At low temperatures, T≪Tc, and zero magnetic field, the density of states is characterized by a small gap Eg≤Tc resulting from the collective proximity effect. Transverse magnetic field Hg(T)∝Eg is expected to destroy the spectral gap driving graphene layer to a kind of a superconductive glass state. Melting of the glass state into a metal occurs at
a higher field Hg2(T).
Образец цитирования:
M. V. Feigel'man, M. A. Skvortsov, K. S. Tikhonov, “Proximity-induced superconductivity in graphene”, Письма в ЖЭТФ, 88:11 (2008), 862–866; JETP Letters, 88:11 (2008), 747–751
Denis Kochan, Michael Barth, Andreas Costa, Klaus Richter, Jaroslav Fabian, LOW-DIMENSIONAL MATERIALS: THEORY, MODELING, EXPERIMENT, DUBNA 2021, 2551, LOW-DIMENSIONAL MATERIALS: THEORY, MODELING, EXPERIMENT, DUBNA 2021, 2022, 040002
Mazaleyrat E., Vlaic S., Artaud A., Magaud L., Vincent T., Gomez-Herrero A.C., Lisi S., Singh P., Bendiab N., Guisset V., David Ph., Pons S., Roditchev D., Chapelier C., Coraux J., 2D Mater., 8:1 (2021), 015002
Ren T., Tsvelik A.M., New J. Phys., 22:10 (2020), 103021
Tikhonov K.S., Feigel'man V M., Ann. Phys., 417 (2020), 168138
Ronseaux P., Othmen R., Kalita D., Han Zh., Marty L., Bendiab N., Renard J., Bouchiat V., J. Appl. Phys., 126:16 (2019), 165301
Wang D., Li D., Muhammad J., Zhou Yu., Zhang X., Wang Z., Lu Sh., Dong X., Zhang Zh., Sci. China-Mater., 61:12 (2018), 1605–1613
Lee G.-H., Lee H.-J., Rep. Prog. Phys., 81:5 (2018), 056502
Ferrari A.C., Bonaccorso F., Fal'ko V., Novoselov K.S., Roche S., Boggild P., Borini S., Koppens F.H.L., Palermo V., Pugno N., Garrido J.A., Sordan R., Bianco A., Ballerini L., Prato M., Lidorikis E., Kivioja J., Marinelli C., Ryhaenen T., Morpurgo A., Coleman J.N., Nicolosi V., Colombo L., Fert A., Garcia-Hernandez M., Bachtold A., Schneider G.F., Guinea F., Dekker C., Barbone M., Sun Zh., Galiotis C., Grigorenko A.N., Konstantatos G., Kis A., Katsnelson M., Vandersypen L., Loiseau A., Morandi V., Neumaier D., Treossi E., Pellegrini V., Polini M., Tredicucci A., Williams G.M., Hong B.H., Ahn J.-H., Kim J.M., Zirath H., van Wees B.J., van der Zant H., Occhipinti L., Di Matteo A., Kinloch I.A., Seyller T., Quesnel E., Feng X., Teo K., Rupesinghe N., Hakonen P., Neil S.R.T., Tannock Q., Loefwandera T., Kinaret J., Nanoscale, 7:11 (2015), 4598–4810
Mir Vahid Hosseini, EPL, 110:4 (2015), 47010
C. L. Richardson, S. D. Edkins, G. R. Berdiyorov, C. J. Chua, J. P. Griffiths, G. A. C. Jones, M. R. Buitelaar, V. Narayan, F. Sfigakis, C. G. Smith, L. Covaci, M. R. Connolly, Phys. Rev. B, 91:24 (2015)
Han Zh., Allain A., Arjmandi-Tash H., Tikhonov K., Feigel'man M., Sacepe B., Bouchiat V., Nat. Phys., 10:5 (2014), 380–386