Аннотация:
This paper reviews the results and techniques from the authors' work on Landau–Ginzburg degenerations and applies
them in basic examples. The main example is the $A_n$-category, where we observe a relationship to stability conditions and directed quiver representations. We conclude with a brief survey of applications to the birational geometry of del Pezzo surfaces.
Bibliography: 31 titles.
Образец цитирования:
C. Diemer, L. Katzarkov, G. Kerr, “Compactifications of spaces of Landau–Ginzburg models”, Изв. РАН. Сер. матем., 77:3 (2013), 55–76; Izv. Math., 77:3 (2013), 487–508
Lev Borisov, Kimoi Kemboi, “Non-existence of phantoms on some non-generic blowups of the projective plane”, Proc. Amer. Math. Soc., 2025
Hiroshi Iritani, “Global Mirrors and Discrepant Transformations for Toric Deligne–Mumford Stacks”, SIGMA, 16 (2020), 032, 111 pp.
Jerby Y., “On Landau-Ginzburg Systems, Co-Tropical Geometry, and <Mml:Msup>Db</Mml:Msup>(X) of Various Toric Fano Manifolds”, J. Math. Phys., 61:6 (2020)
Andrew Hanlon, “Monodromy of monomially admissible Fukaya-Seidel categories mirror to toric varieties”, Advances in Mathematics, 350 (2019), 662
Yochay Jerby, “On exceptional collections of line bundles and mirror symmetry for toric Del-Pezzo surfaces”, Journal of Mathematical Physics, 58:3 (2017)
Ch. Böhning, H.-Ch. Graf von Bothmer, L. Katzarkov, P. Sosna, “Determinantal Barlow surfaces and phantom categories”, J. Eur. Math. Soc. (JEMS), 17:7 (2015), 1569–1592
S. Galkin, E. Shinder, “Exceptional collections of line bundles on the Beauville surface”, Adv. Math., 244 (2013), 1033–1050
Ivan Cheltsov, Ludmil Katzarkov, Victor Przyjalkowski, Birational Geometry, Rational Curves, and Arithmetic, 2013, 93