Аннотация:
Доказано, что стандартная гипотеза Гротендика $B(X)$ типа Лефшеца об алгебраичности операторов $\ast$ и $\Lambda$ теории Ходжа верна для любой гладкой комплексной проективной модели $X$ расслоенного произведения $X_1\times_CX_2$, где $X_1\to C$ – эллиптическая поверхность над гладкой проективной кривой $C$ и $X_2\to C$ – такой морфизм гладкого проективного трехмерного многообразия на кривую, что выполнено одно из следующих условий: общий геометрический слой $X_{2s}$ является поверхностью Энриквеса; все слои морфизма $X_2\to C$ являются гладкими $\mathrm{K}3$-поверхностями и группа Ходжа $\operatorname{Hg}(X_{2s})$ общего геометрического слоя $X_{2s}$ не имеет геометрических простых факторов типа $A_1$ (предположение о группе Ходжа выполняется, если число $22-\operatorname{rank}\operatorname{NS}(X_{2s})$ не делится на 4).
Библиография: 23 наименования.
Ключевые слова:эллиптическое многообразие, стандартная гипотеза типа Лефшеца, поверхность Энриквеса, $\mathrm{K}3$-поверхность, группа Ходжа, алгебраический цикл.
С. Г. Танкеев, “О стандартной гипотезе и существовании разложения Чжоу–Лефшеца для комплексных проективных многообразий”, Изв. РАН. Сер. матем., 79:1 (2015), 185–216; S. G. Tankeev, “On the standard conjecture and the existence of a Chow–Lefschetz decomposition for complex projective varieties”, Izv. Math., 79:1 (2015), 177–207
С. Г. Танкеев, “О стандартной гипотезе для комплексных 4-мерных эллиптических многообразий и компактификаций минимальных моделей Нерона”, Изв. РАН. Сер. матем., 78:1 (2014), 181–214; S. G. Tankeev, “On the standard conjecture for complex 4-dimensional elliptic varieties and compactifications of Néron minimal models”, Izv. Math., 78:1 (2014), 169–200
О. В. Никольская, “Об алгебраических классах когомологий на гладкой модели расслоенного произведения семейств K3 поверхностей”, Матем. заметки, 96:5 (2014), 738–746; O. V. Nikol'skaya, “On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces”, Math. Notes, 96:5 (2014), 745–752