Аннотация:
Доказывается локальная по времени однозначная классическая разрешимость
начально-краевой задачи для системы уравнений Навье–Стокса, которая описывает движение в заданном силовом поле конечной массы жидкости со свободной поверхностью. В этой задаче определению подлежат не только скорость жидкости и давление, но также и область, занимаемая ею в каждый момент времени. Для исследования задачи используется переход к лагранжевым координатам.
Библиография: 10 названий.
Образец цитирования:
В. А. Солонников, “Разрешимость задачи о движении вязкой несжимаемой жидкости, ограниченной свободной поверхностью”, Изв. АН СССР. Сер. матем., 41:6 (1977), 1388–1424; Math. USSR-Izv., 11:6 (1977), 1323–1358
Takayoshi Ogawa, Senjo Shimizu, “Free boundary problems of the incompressible Navier–Stokes equations with non-flat initial surface in the critical Besov space”, Math. Ann., 2024
Takayoshi OGAWA, Senjo SHIMIZU, “Maximal L1-regularity and free boundary problems for the incompressible Navier–Stokes equations in critical spaces”, J. Math. Soc. Japan, 76:2 (2024)
Michael Neilan, Maxim Olshanskii, “An Eulerian finite element method for the linearized Navier–Stokes problem in an evolving domain”, IMA Journal of Numerical Analysis, 2024
Hai-Liang Li, Chuangchuang Liang, “Global existence and large-time behavior for primitive equations with the free boundary”, Sci. China Math., 2024
Amrita Ghosh, Juan J. L. Velázquez, “A Thin Film Model for Meniscus Evolution”, J. Math. Fluid Mech., 26:4 (2024)
Thomas Alazard, Oberwolfach Seminars, 54, Free Boundary Problems in Fluid Dynamics, 2024, 1
Г. И. Бижанова, И. В. Денисова, А. И. Назаров, К. И. Пилецкас, В. В. Пухначев, С. И. Репин, Ж. Ф. Родригеш, Г. А. Серёгин, Н. Н. Уральцева, Е. В. Фролова, “К 90-летию Всеволода Алексеевича Солонникова”, УМН, 78:5(473) (2023), 187–198; G. I. Bizhanova, I. V. Denisova, A. I. Nazarov, K. I. Pileckas, V. V. Pukhnachev, S. I. Repin, J.-F. Rodrigues, G. A. Seregin, N. N. Uraltseva, E. V. Frolova, “On the 90th birthday of Vsevolod Alekseevich Solonnikov”, Russian Math. Surveys, 78:5 (2023), 971–981
Nader Masmoudi, Frédéric Rousset, Changzhen Sun, “Incompressible limit for the free surface Navier-Stokes system”, Ann. PDE, 9:1 (2023)
Jinkai Li, Yasi Zheng, “Local Existence and Uniqueness of Heat Conductive Compressible Navier–Stokes Equations in the Presence of Vacuum Without Initial Compatibility Conditions”, J. Math. Fluid Mech., 25:1 (2023)
Matthias Köhne, Jürgen Saal, “Multiplication in vector‐valued anisotropic function spaces and applications to non‐linear partial differential equations”, Mathematische Nachrichten, 295:9 (2022), 1709
Yongting Huang, Tao Luo, “Compressible viscous heat-conducting surface wave without surface tension”, Journal of Mathematical Physics, 62:6 (2021), 061501
Yanjin Wang, Zhouping Xin, “Global Well-Posedness of Free Interface Problems for the Incompressible Inviscid Resistive MHD”, Commun. Math. Phys., 388:3 (2021), 1323
Takayoshi Ogawa, Senjo Shimizu, “Maximal L1-regularity of the heat equation and application to a free boundary problem of the Navier-Stokes equations near the half-space”, J Elliptic Parabol Equ, 7:2 (2021), 509
Niannian Yan, Bin Zhao, “Global well‐posedness and large time behavior to the two‐phase compressible‐incompressible flow with free boundary”, Math Methods in App Sciences, 43:15 (2020), 8466
Fang‐Hua Lin, Jiajun Tong, “Solvability of the Stokes Immersed Boundary Problem in Two Dimensions”, Comm Pure Appl Math, 72:1 (2019), 159
Yoichiro Mori, Analise Rodenberg, Daniel Spirn, “Well‐Posedness and Global Behavior of the Peskin Problem of an Immersed Elastic Filament in Stokes Flow”, Comm Pure Appl Math, 72:5 (2019), 887
Jiali Lian, “Global well-posedness of the free-surface incompressible Euler equations with damping”, Journal of Differential Equations, 267:2 (2019), 1066
Lee D., “Initial Value Problem For the Free-Boundary Magnetohydrodynamics With Zero Magnetic Boundary Condition”, Commun. Math. Sci., 16:3 (2018), 589–615
Yu Mei, Yong Wang, Zhouping Xin, “Uniform regularity for the free surface compressible Navier–Stokes equations with or without surface tension”, Math. Models Methods Appl. Sci., 28:02 (2018), 259
Vsevolod Alexeevich Solonnikov, Irina Vladimirovna Denisova, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2018, 1135