Аннотация:
Изучаются вопросы отделимости выпуклых подмножеств линейного нормированного пространства при помощи экстремальных гиперплоскостей (функционалов). Вводится понятие бруса (выпуклого замкнутого множества специального вида) и доказывается, что брусы характеризуются свойством отделимости экстремальной гиперплоскостью от любой точки, им не принадлежащей. В двумерных пространствах, в пространствах со строго выпуклым сопряжённым шаром, а также в пространстве непрерывных функций два непересекающихся бруса экстремально отделимы. Также показано, что пространства суммируемых функций этим свойством не обладают. Приводится ряд примеров и обобщений.
Образец цитирования:
А. Р. Алимов, В. Ю. Протасов, “Отделимость выпуклых множеств экстремальными гиперплоскостями”, Фундамент. и прикл. матем., 17:4 (2012), 3–12; J. Math. Sci., 191:5 (2013), 599–604