Аннотация:
В широком диапазоне изменения дисперсности реагентов, плотности и начальной температуры исследовано горение стехиометрических смесей титана с бором и углеродом. Показано, что капиллярное растекание титана в ходе взаимодействия реагентов существенно влияет на закономерности горения. Изучено горение смеси Ti+2В при воздействии ультразвуковых колебаний.
Образец цитирования:
А. И. Кирдяшкин, Ю. М. Максимов, А. Г. Мержанов, “О влиянии капиллярного растекания на процесс горения безгазовых систем”, Физика горения и взрыва, 17:6 (1981), 10–15; Combustion, Explosion and Shock Waves, 17:6 (1981), 591–595
С. В. Костин, П. М. Кришеник, “Устойчивость горения смесей титана с сажей к локальному избытку компонента”, Физика горения и взрыва, 59:5 (2023), 13–21; S. V. Kostin, P. M. Krishenik, “Combustion stability of mixtures of titanium with soot to the local excess of the component”, Combustion, Explosion and Shock Waves, 59:5 (2023), 545–552
S. V. Kostin, P. M. Krishenik, “Combustion of Inhomogeneous Titanium + Carbon Black Powder Mixture”, Int. J Self-Propag. High-Temp. Synth., 32:4 (2023), 254
О.В. Лапшин, В.Г. Прокофьев, 8th International Congress on Energy Fluxes and Radiation Effects, 2022, 1429
M. A. Ponomarev, V. E. Loryan, N. A. Kochetov, A. S. Shchukin, “Synthesis of a Composite Material via Combustion of Titanium and Boron Powders and a Mechanically Activated Aluminum + Nickel Mixture”, Inorg Mater, 58:2 (2022), 133
Yu. V. Bogatov, V. A. Shcherbakov, “Influence of Ti and B Powder Mixing Modes on Mixture Properties and SHS Composite Microstructure”, Russ. J. Non-ferrous Metals, 62:2 (2021), 248
M. A. Ponomarev, V. E. Loryan, “Synthesis of Porous Composite Material with the Combustion of Titanium and Boron Powders and Nickel-Clad Aluminum Granules”, Russ. J. Non-ferrous Metals, 61:6 (2020), 716
A.G. Knyazeva, E.N. Korosteleva, “Brief Review of Kinetic Regularities of TiXCY-Ti Composites Synthesis”, Rev Adv Mater Tech, 2:3 (2020), 1
M. A. Ponomarev, V. E. Loryan, “Synthesis of porous composite material at combustion of titanium and boron powders and nickel-clad aluminum granules”, Izv. VUZ. Poroshk. Met., 2020, no. 2, 44
Yu. V. Bogatov, “Hard Alloy Production by SHS Compaction in Open Matrix”, Russ. J. Non-ferrous Metals, 61:3 (2020), 368
M. A. Ponomarev, V. E. Loryan, “Synthesis of Composite Material in Al–Ti–B System during Combustion of Titanium and Boron Powders and Aluminum-Clad Granules of VT6 Alloy”, Inorg. Mater. Appl. Res., 10:5 (2019), 1204
O. V. Lapshin, V. G. Prokof'ev, “Combustion of Gasless Systems: Thermocapillary Convection of Metal Melt”, Int. J Self-Propag. High-Temp. Synth., 28:4 (2019), 221
V. V. Klubovich, M. M. Kulak, B. B. Khina, “Effect of powerful ultrasound on the combustion processes and phase composition of refractory compounds of titanium at the self-propagating high-temperature synthesis”, Dokl. Akad. nauk, 62:6 (2019), 674
M. A. Ponomarev, V. E. Loryan, “SHS in the Ti—B System with Strongly Different Size of Ti Particles”, Int. J Self-Propag. High-Temp. Synth., 28:2 (2019), 124
V. V. Klubovich, M. M. Kulak, B. B. Khina, “Structural and phase states of titanium borides produced by the self-propagating high-temperature synthesis method in the field of ultrasound oscillations”, Vescì Akademìì navuk Belarusì. Seryâ fizika-tehničnyh navuk, 64:2 (2019), 143
Yury M. Maksimov, Ramil M. Gabbasov, Boris B. Khina, Evgeny A. Levashov, Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, 2017, 6
Boris B. Khina, Mikhail M. Kulak, Evgeny A. Levashov, Yury M. Maksimov, Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, 2017, 411
Yun Zhang, Yinhe Liu, “Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation”, Front. Energy Res., 5 (2017)
Sergey A. Rashkovskiy, Alexandr Yu. Dolgoborodov, “Structure and Behavior of Gasless Combustion Waves in Powders”, Combustion Science and Technology, 189:12 (2017), 2220