Аннотация:
Представлены результаты расчетов задачи о подъеме пыли за проходящей ударной волной в рамках равновесной модели механики гетерогенных сред. Проведена верификация предложенной модели. Показано различие картин течения в слое с различными формами кромки и ударными волнами постоянной и переменной амплитуды. Учет турбулентности смеси приводит к возникновению на кромке слоя вблизи стенки высокоскоростной струйки, наблюдается более высокий уровень подъема частиц.
Ключевые слова:смеси газа и твердых частиц, ударные волны, перемешивание.
Образец цитирования:
А. В. Федоров, И. А. Федорченко, “Расчет подъема пыли за скользящей вдоль слоя ударной волной. Верификация модели”, Физика горения и взрыва, 41:3 (2005), 110–120; Combustion, Explosion and Shock Waves, 41:3 (2005), 336–345
\RBibitem{FedFed05}
\by А.~В.~Федоров, И.~А.~Федорченко
\paper Расчет подъема пыли за скользящей вдоль слоя ударной волной. Верификация модели
\jour Физика горения и взрыва
\yr 2005
\vol 41
\issue 3
\pages 110--120
\mathnet{http://mi.mathnet.ru/fgv1692}
\elib{https://elibrary.ru/item.asp?id=16532355}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 2005
\vol 41
\issue 3
\pages 336--345
\crossref{https://doi.org/10.1007/s10573-005-0041-z}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/fgv1692
https://www.mathnet.ru/rus/fgv/v41/i3/p110
Эта публикация цитируется в следующих 25 статьяx:
Akhil Marayikkottu Vijayan, Deborah A. Levin, “A gas dynamic perspective on particle lifting in electrostatic discharge-like devices using multiphase particle-in-cell approach”, Physics of Fluids, 35:7 (2023)
Ya.E. Poroshyna, P.S. Utkin, “Numerical simulation of a normally incident shock wave – dense particles layer interaction using the Godunov solver for the Baer–Nunziato equations”, International Journal of Multiphase Flow, 142 (2021), 103718
Akhil V. Marayikkottu, Saurabh S. Sawant, Deborah A. Levin, Ci Huang, Mirko Schoenitz, Edward L. Dreizin, “Study of particle lifting mechanisms in an electrostatic discharge plasma”, International Journal of Multiphase Flow, 137 (2021), 103564
Vijaya Kumar Cheeda, “Turbulent flame propagation in corn dust clouds formed in confined and open spaces”, SN Appl. Sci., 2:8 (2020)
Yifan Song, Qi Zhang, “The quantitative studies on gas explosion suppression by an inert rock dust deposit”, Journal of Hazardous Materials, 353 (2018), 62
P. Żydak, P. Oleszczak, R. Klemens, “Experimental research on dust lifting by propagating shock wave”, Shock Waves, 27:2 (2017), 179
O. J. Ugarte, R. W. Houim, E. S. Oran, “Examination of the forces controlling dust dispersion by shock waves”, Phys. Rev. Fluids, 2:7 (2017)
H. Greg Johnston, Amira Y. Chowdhury, M. Sam Mannan, Eric L. Petersen, “Effect of coal-limestone mixtures on dust dispersion behind a moving shock wave”, Journal of Loss Prevention in the Process Industries, 44 (2016), 551
A. Y. Chowdhury, B. D. Marks, H. Greg Johnston, M. Sam Mannan, E. L. Petersen, “A new facility for studying shock-wave passage over dust layers”, Shock Waves, 26:2 (2016), 129
Amira Y. Chowdhury, H. Greg Johnston, Brandon Marks, M. Sam Mannan, Eric L. Petersen, “Effect of shock strength on dust entrainment behind a moving shock wave”, Journal of Loss Prevention in the Process Industries, 36 (2015), 203
B. Marks, A. Chowdhury, E. L. Petersen, M. S. Mannan, 29th International Symposium on Shock Waves 2, 2015, 1523
Hanna Utkilen, Boris V. Balakin, Pawel Kosinski, “Numerical study of dust lifting using the Eulerian–Eulerian approach”, Journal of Loss Prevention in the Process Industries, 27 (2014), 89
Patrick J. Wayne, Peter Vorobieff, Hugh Smyth, Tennille Bernard, Clint Corbin, Andy Maloney, Joseph Conroy, Ross White, Michael Anderson, Sanjay Kumar, C. Randall Truman, Deepti Srivastava, “Shock-Driven Particle Transport Off Smooth and Rough Surfaces”, Journal of Fluids Engineering, 135:6 (2013)
R. Klemens, P. Oleszczak, P. Zydak, “Experimental and numerical investigation into the dynamics of dust lifting up from the layer behind the propagating shock wave”, Shock Waves, 23:3 (2013), 263
А. В. Фёдоров, И. А. Федорченко, “Численное моделирование распространения ударной волны в смеси газа и твердых частиц”, Физика горения и взрыва, 46:5 (2010), 97–107; A. V. Fedorov, I. A. Fedorchenko, “Numerical simulation of shock wave propagation n a mixture of a gas and solid particles”, Combustion, Explosion and Shock Waves, 46:5 (2010), 578–588
A. V. Fedorov, I. A. Fedorchenko, “Numerical modeling of the coal-and-gas outburst gasdynamics”, J Min Sci, 46:5 (2010), 473
А. В. Фёдоров, И. А. Федорченко, “Взаимодействие нормально падающей ударной волны со слоем пористого материала, расположенным на твердой стенке”, Физика горения и взрыва, 46:1 (2010), 102–108; A. V. Fedorov, I. A. Fedorchenko, “Interaction of a normally incident shock wave with a porous material layer on a solid wall”, Combustion, Explosion and Shock Waves, 46:1 (2010), 89–95
П. А. Фомин, Дж.-Р. Чен, “Влияние химически инертных частиц на параметры и подавление детонации в газах”, Физика горения и взрыва, 45:3 (2009), 77–88; P. A. Fomin, J.-R. Chen, “Effect of chemically inert particles on parameters and suppression of detonation in gases”, Combustion, Explosion and Shock Waves, 45:3 (2009), 303–313
Catalin G. Ilea, Pawel Kosinski, Alex C. Hoffmann, “The effect of polydispersity on dust lifting behind shock waves”, Powder Technology, 196:2 (2009), 194
Pavel A. Fomin, Jenq-Renn Chen, “Effect of Chemically Inert Particles on Thermodynamic Characteristics and Detonation of a Combustible Gas”, Combustion Science and Technology, 181:8 (2009), 1038