Аннотация:
В данной работе установлена связь между системой Шлезингера и уравнением Эрнста (стационарным осесимметрическим уравнением Эйнштейна) на уровне классов их алгебро-геометрических решений. В
частности, с помощью соотношений между метрическими коэффициентами и тау-функцией системы Шлезингера вычислены все метрические коэффициенты, соответствующие общему алгебро- геометрическому решению уравнений Эрнста.
Образец цитирования:
Д. А. Короткин, В. Б. Матвеев, “О тэта-функциональных решениях системы Шлезингера и уравнения Эрнста”, Функц. анализ и его прил., 34:4 (2000), 18–34; Funct. Anal. Appl., 34:4 (2000), 252–264
\RBibitem{KorMat00}
\by Д.~А.~Короткин, В.~Б.~Матвеев
\paper О тэта-функциональных решениях системы Шлезингера и уравнения Эрнста
\jour Функц. анализ и его прил.
\yr 2000
\vol 34
\issue 4
\pages 18--34
\mathnet{http://mi.mathnet.ru/faa323}
\crossref{https://doi.org/10.4213/faa323}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1818282}
\zmath{https://zbmath.org/?q=an:0976.83011}
\elib{https://elibrary.ru/item.asp?id=13831115}
\transl
\jour Funct. Anal. Appl.
\yr 2000
\vol 34
\issue 4
\pages 252--264
\crossref{https://doi.org/10.1023/A:1004153222818}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166603100002}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/faa323
https://doi.org/10.4213/faa323
https://www.mathnet.ru/rus/faa/v34/i4/p18
Эта публикация цитируется в следующих 18 статьяx:
Korotkin D., “Bergman Tau-Function: From Einstein Equations and Dubrovin-Frobenius Manifolds to Geometry of Moduli Spaces”, Integrable Systems and Algebraic Geometry: a Celebration of Emma Previato'S 65Th Birthday, Vol 2, London Mathematical Society Lecture Note Series, 459, eds. Donagi R., Shaska T., Cambridge Univ Press, 2020, 215–287
Lenells J., Pei L., “Exact Solution of a Neumann Boundary Value Problem For the Stationary Axisymmetric Einstein Equations”, J. Nonlinear Sci., 29:4 (2019), 1621–1657
Mathew Baxter, Robert A Van Gorder, “Exact and analytic solutions of the Ernst equation governing axially symmetric stationary vacuum gravitational fields”, Phys. Scr., 87:3 (2013), 035005
Brezhnev Yu.V., “Spectral/Quadrature Duality: Picard-Vessiot Theory and Finite-Gap Potentials”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemporary Mathematics, 563, ed. AcostaHumanez P. Finkel F. Kamran N. Olver P., Amer Mathematical Soc, 2012, 1–31
Lenells J., “Boundary Value Problems for the Stationary Axisymmetric Einstein Equations: A Disk Rotating Around a Black Hole”, Comm Math Phys, 304:3 (2011), 585–635
Matveev, VB, “30 years of finite-gap integration theory”, Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 366:1867 (2008), 837
A. Doliwa, M. Nieszporski, P. M. Santini, “Integrable lattices and their sublattices. II. From the B-quadrilateral lattice to the self-adjoint schemes on the triangular and the honeycomb lattices”, Journal of Mathematical Physics, 48:11 (2007)
Christian Klein, Lecture Notes in Physics, 685, Ernst Equation and Riemann Surfaces, 2005, 237
Karas, V, “Gravitating discs around black holes”, Classical and Quantum Gravity, 21:7 (2004), R1
Katsnelson V., Volok D., “Rational solutions of the Schlesinger system and isoprincipal deformations of rational matrix functions I”, Current Trends in Operator Theory and its Applications, Operator Theory : Advances and Applications, 149, 2004, 291–348
К. Клейн, “Изомонодромийный подход к граничным задачам для уравнения Эрнста”, ТМФ, 134:1 (2003), 85–100; C. Klein, “Isomonodromy Approach to Boundary Value Problems for the Ernst Equation”, Theoret. and Math. Phys., 134:1 (2003), 72–85
К. Клейн, “Решение Керра на частично вырожденных гиперэллиптических римановых поверхностях”, ТМФ, 137:2 (2003), 193–200; C. Klein, “The Kerr Solution on Partially Degenerate Hyperelliptic Riemann Surfaces”, Theoret. and Math. Phys., 137:2 (2003), 1520–1526
Klein, C, “On explicit solutions to the stationary axisymmetric Einstein-Maxwell equations describing dust disks”, Annalen der Physik, 12:10 (2003), 599
C. Klein, “On explicit solutions to the stationary axisymmetric Einstein‐Maxwell equations describing dust disks”, Annalen der Physik, 515:10 (2003), 599
Klein, C, “Ernst equation, Fay identities and variational formulas on hyperelliptic curves”, Mathematical Research Letters, 9:1 (2002), 27
Frauendiener J., Klein C., “Exact relativistic treatment of stationary counterrotating dust disks: Physical properties”, Physical Review D, 63:8 (2001), 084025
Klein C., “Exact relativistic treatment of stationary counterrotating dust disks: Boundary value problems and solutions”, Physical Review D, 63:6 (2001), 064033