Аннотация:
В статье показано, что условие инвариантности относительно обобщенных преобразований Лежандра позволяет эффективно выделить класс интегрируемых разностных уравнений на треугольной решетке, являющихся дискретными аналогами релятивистских цепочек Тоды. Некоторые из полученных уравнений, по-видимому, являются новыми. Для одного из них предъявлены высшие симметрии и представление нулевой кривизны.
Образец цитирования:
В. Э. Адлер, “Преобразования Лежандра на треугольной решетке”, Функц. анализ и его прил., 34:1 (2000), 1–11; Funct. Anal. Appl., 34:1 (2000), 1–9
Decio Levi, Miguel A. Rodríguez, “Non-Existence of S-Integrable Three-Point Partial Difference Equations in the Lattice Plane”, SIGMA, 19 (2023), 084, 7 pp.
V. E. Vekslerchik, “Explicit Solutions for a Nonlinear Vector Model on the Triangular Lattice”, SIGMA, 15 (2019), 028, 17 pp.
Lam W.Y., “Discrete Minimal Surfaces: Critical Points of the Area Functional From Integrable Systems”, Int. Math. Res. Notices, 2018, no. 6, 1808–1845
В. Э. Адлер, “Интегрируемые семиточечные дискретные уравнения и эволюционные цепочки второго порядка”, ТМФ, 195:1 (2018), 27–43; V. E. Adler, “Integrable seven-point discrete equations and second-order evolution chains”, Theoret. and Math. Phys., 195:1 (2018), 513–528
Yuri B Suris, “Discrete time Toda systems”, J. Phys. A: Math. Theor., 51:33 (2018), 333001
Vekslerchik V.E., “Explicit solutions for a nonlinear model on the honeycomb and triangular lattices”, J. Nonlinear Math. Phys., 23:3 (2016), 399–422
V E Vekslerchik, “Solitons of a vector model on the honeycomb lattice”, J. Phys. A: Math. Theor., 49:45 (2016), 455202
Raphael Boll, Matteo Petrera, Yuri B Suris, “Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Relativistic Toda-type systems”, J. Phys. A: Math. Theor., 48:8 (2015), 085203
Boll R., Petrera M., Suris Yu.B., “What Is Integrability of Discrete Variational Systems?”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 470:2162 (2014), 20130550
Scimiterna C., Levi D., “Three-Point Partial Difference Equations Linearizable by Local and Nonlocal Transformations”, J. Phys. A-Math. Theor., 46:2 (2013), 025205
Boll R., Petrera M., Suris Yu.B., “Multi-Time Lagrangian 1-Forms for Families of Backlund Transformations: Toda-Type Systems”, J. Phys. A-Math. Theor., 46:27 (2013), 275204
Boll R., Suris Yu.B., “Non-symmetric discrete Toda systems from quad-graphs”, Appl Anal, 89:4 (2010), 547–569
Feng Yang, Ding Qi, Dong Yan-Cheng, Zhang Hong-Qing, “Hyperelliptic Function Solutions of Three Genus for KP Equation Using Direct Method”, Commun. Theor. Phys., 53:4 (2010), 615
Doliwa, A, “Integrable lattices and their sublattices. II. From the B-quadrilateral lattice to the self-adjoint schemes on the triangular and the honeycomb lattices”, Journal of Mathematical Physics, 48:11 (2007), 113506
Yamilov, R, “Symmetries as integrability criteria for differential difference equations”, Journal of Physics A-Mathematical and General, 39:45 (2006), R541
Adler, VE, “Q(4): Integrable master equation related to an elliptic curve”, International Mathematics Research Notices, 2004, no. 47, 2523
Bobenko, AI, “Hexagonal circle patterns and integrable systems: Patterns with constant angles”, Duke Mathematical Journal, 116:3 (2003), 525
Bobenko, AI, “Integrable systems on quad-graphs”, International Mathematics Research Notices, 2002, no. 11, 573
Bobenko, AI, “Hexagonal circle patterns and integrable systems: Patterns with the multi-ratio property and lax equations on the regular triangular lattice”, International Mathematics Research Notices, 2002, no. 3, 111