Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 1, Pages 74–89
DOI: https://doi.org/10.7868/S0044466913010158
(Mi zvmmf9796)
 

This article is cited in 12 scientific papers (total in 12 papers)

The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for TM waves propagating in a layer with arbitrary nonlinearity

D. V. Valovik, E. V. Zarembo

Penza State University
References:
Abstract: The problem of plane monochromatic TM waves propagating in a layer with an arbitrary nonlinearity is considered. The layer is placed between two semi-infinite media. Surface waves propagating along the material interface are sought. The physical problem is reduced to solving a nonlinear eigenvalue transmission problem for a system of two ordinary differential equations. A theorem on the existence and localization of at least one eigenvalue is proven. On the basis of this theorem, a method for finding approximate eigenvalues of the considered problem is proposed. Numerical results for Kerr and saturation nonlinearities are presented as examples.
Key words: nonlinear eigenvalue transmission problem, Maxwell equations, Cauchy problem, approximate method for computation of eigenvalues.
Received: 22.05.2012
Revised: 11.07.2012
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 1, Pages 78–92
DOI: https://doi.org/10.1134/S0965542513010089
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: D. V. Valovik, E. V. Zarembo, “The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for TM waves propagating in a layer with arbitrary nonlinearity”, Zh. Vychisl. Mat. Mat. Fiz., 53:1 (2013), 74–89; Comput. Math. Math. Phys., 53:1 (2013), 78–92
Citation in format AMSBIB
\Bibitem{ValZar13}
\by D.~V.~Valovik, E.~V.~Zarembo
\paper The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for TM waves propagating in a layer with arbitrary nonlinearity
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 1
\pages 74--89
\mathnet{http://mi.mathnet.ru/zvmmf9796}
\crossref{https://doi.org/10.7868/S0044466913010158}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3249017}
\zmath{https://zbmath.org/?q=an:06183605}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013CMMPh..53...78V}
\elib{https://elibrary.ru/item.asp?id=18446742}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 1
\pages 78--92
\crossref{https://doi.org/10.1134/S0965542513010089}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314309400007}
\elib{https://elibrary.ru/item.asp?id=21918035}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880744539}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9796
  • https://www.mathnet.ru/eng/zvmmf/v53/i1/p74
  • This publication is cited in the following 12 articles:
    1. Valeria Martynova, Dmitry Valovik, “Nonlinearized nonlinear electromagnetic guided waves in a circle cylindrical waveguide filled with nonlinear dielectric medium”, Journal of Differential Equations, 367 (2023), 804  crossref
    2. Tohfeh M., Rajaei L., Miraboutalebi S., Matin L.F., “Transmission of Electromagnetic Waves Through a Nonlinear Over-Dense Plasma Slab”, J. Theor. Appl. Phys., 14:4 (2020), 349–357  crossref  isi
    3. M. A. Moskaleva, “Ob obosnovanii chislennogo metoda resheniya nekotorykh nelineinykh zadach na sobstvennye znacheniya teorii volnovodov”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2018, no. 4, 39–49  mathnet  crossref
    4. E. Smolkin, Yu. Shestopalov, “Nonlinear Goubau line: analytical-numerical approaches and new propagation regimes”, J. Electromagn. Waves Appl., 31:8 (2017), 781–797  crossref  isi  scopus
    5. I. S. Panyaev, D. G. Sannikov, “Dispersive properties of optical tm-type surface polaritons at a nonlinear semiconductor-nanocomposite (blig/ggg) interface”, J. Opt. Soc. Am. B-Opt. Phys., 33:2 (2016), 220–229  crossref  isi  elib  scopus
    6. E. A. Marennikova, “Zadacha na sobstvennye znacheniya, opisyvayuschaya rasprostranenie elektromagnitnykh TE-voln v ploskom dielektricheskom volnovode, zapolnennom nelineinoi neodnorodnoi sredoi”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2015, no. 3, 72–87  mathnet
    7. Yury G. Smirnov, Eugenii Yu. Smol'kin, Dmitry V. Valovik, “Nonlinear Double-Layer Bragg Waveguide: Analytical and Numerical Approaches to Investigate Waveguiding Problem”, Advances in Numerical Analysis, 2014 (2014), 1  crossref
    8. E.A. Marennikova, Yu. G. Smirnov, D.V. Valovik, Proceedings of the International Conference Days on Diffraction 2014, 2014, 181  crossref
    9. D. V. Valovik, Yu. G. Smirnov, E. Yu. Smol'kin, “Nonlinear transmission eigenvalue problem describing TE wave propagation in two-layered cylindrical dielectric waveguides”, Comput. Math. Math. Phys., 53:7 (2013), 973–983  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    10. D. V. Valovik, E. Yu. Smol'kin, “Calculation of the propagation constants of inhomogeneous nonlinear double-layer circular cylindrical waveguide by means of the cauchy problem method”, J. Commun. Technol. Electron., 58:8 (2013), 762–769  crossref  mathscinet  isi  elib  scopus
    11. D. V. Valovik, E. A. Marennikova, Yu. G. Smirnov, “Nelineinaya zadacha sopryazheniya na sobstvennye znacheniya, opisyvayuschaya rasprostranenie elektromagnitnykh Te-voln v ploskom neodnorodnom nelineinom dielektricheskom volnovode”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2013, no. 2(26), 50–63  elib
    12. D. V. Valovik, E. A. Marennikova, Yu. G. Smirnov, “Nelineinaya zadacha sopryazheniya na sobstvennye znacheniya, opisyvayuschaya rasprostranenie elektromagnitnykh TE-voln v ploskom neodnorodnom nelineinom dielektricheskom volnovode”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2013, no. 2, 50–63  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :119
    References:79
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025