Processing math: 100%
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 9, Pages 1633–1654 (Mi zvmmf9733)  

Uniform grid approximation of nonsmooth solutions with improved convergence for a singularly perturbed convection-diffusion equation with characteristic layers

U. H. Zhemuhov

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119991 Russia
References:
Abstract: A mixed boundary value problem for a singularly perturbed elliptic convection-diffusion equation with constant coefficients in a square domain is considered. Dirichlet conditions are specified on two sides orthogonal to the flow, and Neumann conditions are set on the other two sides. The right-hand side and the boundary functions are assumed to be sufficiently smooth, which ensures the required smoothness of the desired solution in the domain, except for neighborhoods of the corner points. Only zero-order compatibility conditions are assumed to hold at the corner points. The problem is solved numerically by applying an inhomogeneous monotone difference scheme on a rectangular piecewise uniform Shishkin mesh. The inhomogeneity of the scheme lies in that the approximating difference equations are not identical at different grid nodes but depend on the perturbation parameter. Under the assumptions made, the numerical solution is proved to converge ε-uniformly to the exact solution in a discrete uniform metric at an O(N3/2ln2N) rate, where N is the number of grid nodes in each coordinate direction.
Key words: singularly perturbed convection-diffusion equation, mixed boundary value problem, finite-difference method, layer-adapted mesh, characteristic boundary layer, corner singularity, uniform convergence of grid approximations.
Received: 17.10.2011
Revised: 13.03.2012
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 9, Pages 1239–1259
DOI: https://doi.org/10.1134/S0965542512090060
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: U. H. Zhemuhov, “Uniform grid approximation of nonsmooth solutions with improved convergence for a singularly perturbed convection-diffusion equation with characteristic layers”, Zh. Vychisl. Mat. Mat. Fiz., 52:9 (2012), 1633–1654; Comput. Math. Math. Phys., 52:9 (2012), 1239–1259
Citation in format AMSBIB
\Bibitem{Zhe12}
\by U.~H.~Zhemuhov
\paper Uniform grid approximation of nonsmooth solutions with improved convergence for a~singularly perturbed convection-diffusion equation with characteristic layers
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 9
\pages 1633--1654
\mathnet{http://mi.mathnet.ru/zvmmf9733}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3247692}
\elib{https://elibrary.ru/item.asp?id=17888653}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 9
\pages 1239--1259
\crossref{https://doi.org/10.1134/S0965542512090060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000308818400004}
\elib{https://elibrary.ru/item.asp?id=20483595}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866517570}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9733
  • https://www.mathnet.ru/eng/zvmmf/v52/i9/p1633
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :83
    References:75
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025