Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 8, Pages 1457–1471 (Mi zvmmf9698)  

This article is cited in 9 scientific papers (total in 9 papers)

Continuation of solutions in multiparameter approximation of curves and surfaces

E. B. Kuznetsov

Moscow State Aviation Institute, Volokolamskoe sh. 4, Moscow, 125993 Russia
Full-text PDF (284 kB) Citations (9)
References:
Abstract: When a system of nonlinear algebraic or transcendental equations with several parameters is solved numerically, the best parameters within the framework of the continuation method have to be sought in the tangent space of the solution set of this system. More specifically, these parameters have to be sought in the directions of the eigenvectors of a linear self-adjoint transformation. Algorithms for the best parametrization of curves and surfaces are proposed. Numerical examples of parametric interpolation of surfaces confirm previously known theoretical results.
Key words: parametric system of nonlinear equations, best parameters, splines, parametrization of curves, parametrization of surfaces.
Received: 02.02.2012
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 8, Pages 1149–1162
DOI: https://doi.org/10.1134/S0965542512080076
Bibliographic databases:
Document Type: Article
UDC: 519.674
Language: Russian
Citation: E. B. Kuznetsov, “Continuation of solutions in multiparameter approximation of curves and surfaces”, Zh. Vychisl. Mat. Mat. Fiz., 52:8 (2012), 1457–1471; Comput. Math. Math. Phys., 52:8 (2012), 1149–1162
Citation in format AMSBIB
\Bibitem{Kuz12}
\by E.~B.~Kuznetsov
\paper Continuation of solutions in multiparameter approximation of curves and surfaces
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 8
\pages 1457--1471
\mathnet{http://mi.mathnet.ru/zvmmf9698}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3245238}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012CMMPh..52.1149K}
\elib{https://elibrary.ru/item.asp?id=17845619}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 8
\pages 1149--1162
\crossref{https://doi.org/10.1134/S0965542512080076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000307883700007}
\elib{https://elibrary.ru/item.asp?id=20472040}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865528182}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9698
  • https://www.mathnet.ru/eng/zvmmf/v52/i8/p1457
  • This publication is cited in the following 9 articles:
    1. Karpov V.V., Semenov A.A., “Structural Anisotropy Method For Shells With Orthogonal Stiffeners”, Structures, 34 (2021), 3206–3221  crossref  isi
    2. Karpov V.V., Semenov A.A., “Refined Model of Stiffened Shells”, Int. J. Solids Struct., 199 (2020), 43–56  crossref  isi
    3. Yu. V. Klochkov, A. P. Nikolaev, T. R. Ishchanov, “Allowance for transverse shear deformations in the finite element calculation of a thin elliptic cylinder shell”, J. Mach. Manuf. Reliab., 47:4 (2018), 349–355  crossref  crossref  isi  elib  scopus
    4. V. V. Karpov, “Models of the shells having ribs, reinforcement plates and cutouts”, Int. J. Solids Struct., 146 (2018), 117–135  crossref  isi  scopus
    5. V. V. Karpov, A. A. Semenov, “Mathematical models and algorithms for studying the strength and stability of shell structures”, J. Appl. Industr. Math., 11:1 (2017), 70–81  mathnet  crossref  crossref  mathscinet  elib
    6. S. D. Krasnikov, E. B. Kuznetsov, “Numerical continuation of solution at a singular point of high codimension for systems of nonlinear algebraic or transcendental equations”, Comput. Math. Math. Phys., 56:9 (2016), 1551–1564  mathnet  crossref  crossref  isi  elib
    7. A. A. Semenov, “Strength and stability of geometrically nonlinear orthotropic shell structures”, Thin-Walled Struct., 106 (2016), 428–436  crossref  isi  elib  scopus
    8. V. Karpov, A. Semenov, “Comprehensive study of the strength and stability of shallow shells made of fiberglass”, Mechanics, Resource and Diagnostics of Materials and Structures, MRDMS-2016, Proceedings of the 10th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures (Ekaterinburg, Russia, 16?20 May 2016), AIP Conf. Proc., 1785, eds. E. Gorkunov, V. Panin, S. Ramasubbu, Amer. Inst. Phys., 2016, UNSP 040022  crossref  isi  scopus
    9. S. D. Krasnikov, E. B. Kuznetsov, “Numerical continuation of solution at singular points of codimension one”, Comput. Math. Math. Phys., 55:11 (2015), 1802–1822  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:507
    Full-text PDF :139
    References:98
    First page:14
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025