Abstract:
Several statements of the spectral problem in the theory of regular waveguides are considered. The completeness of the system of eigenvectors of these problems, which is a consequence of the earlier established completeness property of a certain system of eigenvectors, is proved.
Key words:
completeness of the system of eigenvectors, electromagnetic waveguides, Maxwell’s equations.
Citation:
A. L. Delitsyn, “On the completeness of the system of eigenvectors of electromagnetic waveguides”, Zh. Vychisl. Mat. Mat. Fiz., 51:10 (2011), 1883–1888; Comput. Math. Math. Phys., 51:10 (2011), 1771–1776
\Bibitem{Del11}
\by A.~L.~Delitsyn
\paper On the completeness of the system of eigenvectors of electromagnetic waveguides
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2011
\vol 51
\issue 10
\pages 1883--1888
\mathnet{http://mi.mathnet.ru/zvmmf9562}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2907388}
\transl
\jour Comput. Math. Math. Phys.
\yr 2011
\vol 51
\issue 10
\pages 1771--1776
\crossref{https://doi.org/10.1134/S0965542511100058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297344800012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053914629}
Linking options:
https://www.mathnet.ru/eng/zvmmf9562
https://www.mathnet.ru/eng/zvmmf/v51/i10/p1883
This publication is cited in the following 10 articles:
D. V. Divakov, A. A. Tyutyunnik, “Symbolic-Numerical Implementation of the Galerkin Method for Approximate Solution of the Waveguide Diffraction Problem”, Program Comput Soft, 49:2 (2023), 100
D. V. DIVAKOV, A. A. TYUTYUNNIK, “SYMBOLIC-NUMERICAL IMPLEMENTATION OF THE GALERKIN METHOD FOR APPROXIMATE SOLUTION OF THE WAVEGUIDE DIFFRACTION PROBLEM”, Programmirovanie, 2023, no. 2, 46
O. K. Kroytor, M. D. Malykh, L. A. Sevastyanov, “On normal modes of a waveguide”, Comput. Math. Math. Phys., 62:3 (2022), 393–410
Oleg K. Kroytor, Mikhail D. Malykh, “On a dispersion curve of a waveguide filled with inhomogeneous substance”, Discrete and Continuous Models, 30:4 (2022), 330
Delitsyn A.L., “Mathematical Problems of Radiation and Propagation in Electromagnetic Waveguides”, J. Commun. Technol. Electron., 64:12 (2019), 1323–1338
Divakov D.V. Malykh M.D. Sevastianov L.A. Tiutiunnik A.A., “On the Calculation of Electromagnetic Fields in Closed Waveguides With Inhomogeneous Filling”, Numerical Methods and Applications, Nma 2018, Lecture Notes in Computer Science, ed. Nikolov G. Kolkovska N. Georgiev K., Springer International Publishing Ag, 2019, 458–465
M. D. Malykh, L. A. Sevastyanov, “On the representation of electromagnetic fields in discontinuously filled closed waveguides by means of continuous potentials”, Comput. Math. Math. Phys., 59:2 (2019), 330–342
Divakov D.V. Lovetskiy K.P. Malykh M.D. Tiutiunnik A.A., “The Application of Helmholtz Decomposition Method to Investigation of Multicore Fibers and Their Application in Next-Generation Communications Systems”, Distributed Computer and Communication Networks (Dccn 2018), Communications in Computer and Information Science, 919, ed. Vishnevskiy V. Kozyrev D., Springer-Verlag Berlin, 2018, 469–480
Sevastianov L.A. Egorov A.A. Sevastyanov A.L., “Method of Adiabatic Modes in Studying Problems of Smoothly Irregular Open Waveguide Structures”, Phys. Atom. Nuclei, 76:2 (2013), 224–239
Delitsyn A.L., Kruglov S.I., “Primenenie metoda smeshannykh konechnykh elementov dlya vychisleniya mod tsilindricheskikh volnovodov s peremennym pokazatelem prelomleniya.”, Zhurnal radioelektroniki, 2012, no. 4, 7, 26 pp.