Abstract:
Vortex structures in subsonic and transonic jets of various initial profiles are numerically simulated. The mathematical models are based on conservative finite difference schemes that approximate conservation laws in the framework of the model of nonviscous perfect gas. The unsteady vortex structures are visualized. Pulsating characteristics of the flow are examined and compared with experimental data. Computations are performed using parallel algorithms implemented on a cluster architecture system. The influence of the parallelization scheme and the number of computing units on the performance of the algorithms is investigated. The approximation errors of realife computations are estimated using the differential approximation method.
Citation:
A. V. Babakov, “Numerical simulation of spatially unsteady jets of compressible gas on a multiprocessor computer system”, Zh. Vychisl. Mat. Mat. Fiz., 51:2 (2011), 251–260; Comput. Math. Math. Phys., 51:2 (2011), 235–244
\Bibitem{Bab11}
\by A.~V.~Babakov
\paper Numerical simulation of spatially unsteady jets of compressible gas on a~multiprocessor computer system
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2011
\vol 51
\issue 2
\pages 251--260
\mathnet{http://mi.mathnet.ru/zvmmf8060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2838885}
\transl
\jour Comput. Math. Math. Phys.
\yr 2011
\vol 51
\issue 2
\pages 235--244
\crossref{https://doi.org/10.1134/S0965542511020035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288023500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952288661}
Linking options:
https://www.mathnet.ru/eng/zvmmf8060
https://www.mathnet.ru/eng/zvmmf/v51/i2/p251
This publication is cited in the following 9 articles:
V. A. Guschin, “Razrabotka i primenenie metoda rasschepleniya po fizicheskim faktoram dlya issledovaniya techenii neszhimaemoi zhidkosti”, Kompyuternye issledovaniya i modelirovanie, 14:4 (2022), 715–739
Alexander V. Babakov, Smart Innovation, Systems and Technologies, 214, Smart Modelling For Engineering Systems, 2021, 35
Babakov A.V. Finchenko V.S., “The Numerical Simulation of Aerodynamics of the Frontal Aerodynamic Screen of Exomars Project Descent Vehicle and the Analysis of Flow Pattern in the Base Area and Near Wake”, Solar Syst. Res., 54:7 (2020), 712–718
Alexander V. Babakov, Alexey Yu. Lugovsky, Valery M. Chechetkin, Smart Innovation, Systems and Technologies, 133, Smart Modeling for Engineering Systems, 2019, 210
A. V. Babakov, V. M. Chechetkin, “Matematicheskoe modelirovanie vikhrevogo dvizheniya v astrofizicheskikh ob'ektakh na osnove gazodinamicheskoi modeli”, Kompyuternye issledovaniya i modelirovanie, 10:5 (2018), 631–643
A. V. Babakov, A. V. Beloshitskiy, V. I. Gaydaenko, A. A. Dyadkin, “Simulation of the spatial flow in axisymmetrical nozzle with nonsymmetrical critical and exit sections”, Math. Models Comput. Simul., 11:3 (2019), 457–468
A. G. Aksenov, A. V. Babakov, V. M. Chechetkin, “Mathematical simulation of vortex structures in rapidly rotating astrophysical objects”, Comput. Math. Math. Phys., 58:8 (2018), 1287–1293
A. V. Babakov, M. V. Popov, V. M. Chechetkin, “Mathematical simulation of a massive star evolution on the basis of a gasdynamical model”, Math. Models Comput. Simul., 10:3 (2018), 357–362
O. M. Belotserkovsky, A. V. Babakov, A. V. Beloshitskiy, V. I. Gaydaenko, A. A. Dyadkin, “Numerical simulation of some problems of recovery capsule aerodynamics”, Math. Models Comput. Simul., 8:5 (2016), 568–576