Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2009, Volume 49, Number 2, Pages 382–396 (Mi zvmmf47)  

This article is cited in 5 scientific papers (total in 5 papers)

Estimates of the absolute error and a scheme for an approximate solution to scheduling problems

A. A. Lazarev

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, ul. Profsoyuznaya 65, Moscow, 117997, Russia
References:
Abstract: An approach is proposed for estimating absolute errors and finding approximate solutions to classical NP-hard scheduling problems of minimizing the maximum lateness for one or many machines and makespan is minimized. The concept of a metric (distance) between instances of the problem is introduced. The idea behind the approach is, given the problem instance, to construct another instance for which an optimal or approximate solution can be found at the minimum distance from the initial instance in the metric introduced. Instead of solving the original problem (instance), a set of approximating polynomially/pseudopolynomially solvable problems (instances) are considered, an instance at the minimum distance from the given one is chosen, and the resulting schedule is then applied to the original instance.
Key words: scheduling theory, minimization of maximum lateness, absolute error estimate, approximate solution.
Received: 12.12.2007
Revised: 26.05.2008
English version:
Computational Mathematics and Mathematical Physics, 2009, Volume 49, Issue 2, Pages 373–386
DOI: https://doi.org/10.1134/S0965542509020158
Bibliographic databases:
Document Type: Article
UDC: 519.854.2
Language: Russian
Citation: A. A. Lazarev, “Estimates of the absolute error and a scheme for an approximate solution to scheduling problems”, Zh. Vychisl. Mat. Mat. Fiz., 49:2 (2009), 382–396; Comput. Math. Math. Phys., 49:2 (2009), 373–386
Citation in format AMSBIB
\Bibitem{Laz09}
\by A.~A.~Lazarev
\paper Estimates of the absolute error and a~scheme for an approximate solution to scheduling problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 2
\pages 382--396
\mathnet{http://mi.mathnet.ru/zvmmf47}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2555681}
\zmath{https://zbmath.org/?q=an:1183.90178}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 2
\pages 373--386
\crossref{https://doi.org/10.1134/S0965542509020158}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000263968600015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-62149146485}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf47
  • https://www.mathnet.ru/eng/zvmmf/v49/i2/p382
  • This publication is cited in the following 5 articles:
    1. Ilia Tarasov, Alain Haït, Alexander Lazarev, Olga Battaïa, “Metric estimation approach for managing uncertainty in resource leveling problem”, Ann Oper Res, 2024  crossref
    2. T.C. Edwin Cheng, Alexander Lazarev, Darya Lemtyuzhnikova, “A Metric Approach for the Two-Station Single-Track Railway Scheduling Problem”, IFAC-PapersOnLine, 55:10 (2022), 2875  crossref
    3. M.O. Knyazyatov, V.A. Rasskazova, “An Algorithm for Covering the Vertices of a Directed Graph”, Modelling and Data Analysis, 11:1 (2021), 33  crossref
    4. D. N. Gainanov, A. I. Kibzun, V. A. Rasskazova, “The decomposition problem for the set of paths in a directed graph and its application”, Autom. Remote Control, 79:12 (2018), 2217–2236  mathnet  crossref  crossref  isi  elib
    5. D. N. Gainanov, A. V. Konygin, V. A. Rasskazova, “Modelling railway freight traffic using the methods of graph theory and combinatorial optimization”, Autom. Remote Control, 77:11 (2016), 1928–1943  mathnet  crossref  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:578
    Full-text PDF :177
    References:71
    First page:9
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025