Abstract:
The Boltzmann equation for a mixture of particles with different masses is modeled using symmetric discrete velocity models that involve energy interchange between the species of the mixture. The computational complexity of this problem is investigated. New discrete models are presented.
Citation:
S. Z. Adzhiev, V. V. Vedenyapin, “On the sizes of discrete velocity models of the Boltzmann equation for mixtures”, Zh. Vychisl. Mat. Mat. Fiz., 47:6 (2007), 1045–1054; Comput. Math. Math. Phys., 47:6 (2007), 998–1006
\Bibitem{AdzVed07}
\by S.~Z.~Adzhiev, V.~V.~Vedenyapin
\paper On the sizes of discrete velocity models of the Boltzmann equation for mixtures
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 6
\pages 1045--1054
\mathnet{http://mi.mathnet.ru/zvmmf4600}
\elib{https://elibrary.ru/item.asp?id=9535268}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 6
\pages 998--1006
\crossref{https://doi.org/10.1134/S0965542507060103}
\elib{https://elibrary.ru/item.asp?id=13545452}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547314351}
Linking options:
https://www.mathnet.ru/eng/zvmmf4600
https://www.mathnet.ru/eng/zvmmf/v47/i6/p1045
This publication is cited in the following 4 articles:
S. Z. Adzhiev, V. V. Vedenyapin, I. V. Melikhov, “Kinetic aggregation models leading to morphological memory of formed structures”, Comput. Math. Math. Phys., 62:2 (2022), 254–268
S. Z. Adzhiev, V. V. Vedenyapin, S. S. Filippov, “$H$-theorem for continuous- and discrete-time chemical kinetic systems and a system of nucleosynthesis equations”, Comput. Math. Math. Phys., 58:9 (2018), 1462–1476
Adzhiev S.Z. Melikhov I.V. Vedenyapin V.V., “The H-Theorem For the Physico-Chemical Kinetic Equations With Discrete Time and For Their Generalizations”, Physica A, 480 (2017), 39–50
S. Z. Adzhiev, V. V. Vedenyapin, Yu. A. Volkov, I. V. Melikhov, “Generalized Boltzmann-type equations for aggregation in gases”, Comput. Math. Math. Phys., 57:12 (2017), 2017–2029