Abstract:
Many applied problems are described by differential algebraic systems. Complex Rosenbrock schemes are proposed for the numerical integration of differential algebraic systems by the ε-embedding method. The method is proved to converge quadratically. The scheme is shown to be applicable even to superstiff systems. The method makes it possible to perform computations with a guaranteed accuracy. An equation is derived that describes the leading term of the error in the method as a function of time. An algorithm extending the method to systems of differential equations for complex-valued functions is proposed. Examples of numerical computations are given.
Key words:
systems of stiff differential algebraic equations, Rosenbrock scheme with complex coefficients.
Citation:
A. B. Alshin, E. A. Alshina, N. N. Kalitkin, A. B. Koryagina, “Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems”, Zh. Vychisl. Mat. Mat. Fiz., 46:8 (2006), 1392–1414; Comput. Math. Math. Phys., 46:8 (2006), 1320–1340
This publication is cited in the following 53 articles:
A. V. Lipatov, I. V. Abalakin, “Modelirovanie dvizheniya lopasti sharnirnogo vinta”, Preprinty IPM im. M. V. Keldysha, 2025, 008, 24 pp.
V. E. Karpov, A. I. Lobanov, “Ob odnom variante W-metoda, osnovannom na metode CROS”, Matem. modelirovanie, 37:2 (2025), 155–169
Mikhail V. Bezgachev, Maxim A. Shishlenin, Alexander V. Sokolov, “Identification of a mathematical model of economic development of two regions of the world”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 47 (2024), 12–30
M. O. Korpusov, R. S. Shafir, A. K. Matveeva, “Numerical Diagnostics of Solution Blow-Up in a Thermoelectric Semiconductor Model”, Comput. Math. and Math. Phys., 64:7 (2024), 1595
Nikolai N. Nefedov, Andrey O. Orlov, Lutz Recke, Klaus R. Schneider, “Nonsmooth regular perturbations of singularly perturbed problems”, Journal of Differential Equations, 375 (2023), 206
Koledina K.F., Gubaydullin I.M., Koledin S.N., “Multicriteria Optimization of the Catalytic Reaction For the Synthesis of Benzyl Butyl Ether Based on the Kinetic Model”, React. Kinet. Mech. Catal., 135:1 (2022), 155–167
A. A. Andreeva, M. Anand, A. I. Lobanov, A. V. Nikolaev, M. A. Panteleev, “Ispolzovanie prodolzhennykh sistem ODU dlya issledovaniya matematicheskikh modelei svertyvaniya krovi”, Kompyuternye issledovaniya i modelirovanie, 14:4 (2022), 931–951
Ndivhuwo Ndou, Phumlani Dlamini, Byron Alexander Jacobs, “Enhanced Unconditionally Positive Finite Difference Method for Advection–Diffusion–Reaction Equations”, Mathematics, 10:15 (2022), 2639
R. L. Argun, A. V. Gorbachev, D. V. Lukyanenko, M. A. Shishlenin, “Features of numerical reconstruction of a boundary condition in an inverse problem for a reaction–diffusion–advection equation with data on the position of a reaction front”, Comput. Math. Math. Phys., 62:3 (2022), 441–451
R.L. Argun, V.T. Volkov, D.V. Lukyanenko, “Numerical simulation of front dynamics in a nonlinear singularly perturbed reaction–diffusion problem”, Journal of Computational and Applied Mathematics, 412 (2022), 114294
Moreta M.J., “Rosenbrock Type Methods For Solving Non-Linear Second-Order in Time Problems”, Mathematics, 9:18 (2021), 2225
Lukyanenko D.V. Borzunov A. . A. . Shishlenin M.A., “Solving Coefficient Inverse Problems For Nonlinear Singularly Perturb E D Equations of the Reaction-Diffusion-Advection Type With Data on the Position of a Reaction Front”, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105824
Lukyanenko D., Yeleskina T., Prigorniy I., Isaev T., Borzunov A., Shishlenin M., “Inverse Problem of Recovering the Initial Condition For a Nonlinear Equation of the Reaction-Diffusion-Advection Type By Data Given on the Position of a Reaction Front With a Time Delay”, Mathematics, 9:4 (2021), 342
Boris A. Polyak, Denis A. Mitroshin, Anton V. Ilin, Maxim L. Kurkin, Smart Innovation, Systems and Technologies, 215, Smart Modelling for Engineering Systems, 2021, 295
Kamila Koledina, Sergey Koledin, Irek Gubaydullin, Communications in Computer and Information Science, 1514, Advances in Optimization and Applications, 2021, 217
A. A. Karpaev, R. R. Aliev, “Primenenie uproschennogo neyavnogo metoda Eilera dlya resheniya zadach elektrofiziologii”, Kompyuternye issledovaniya i modelirovanie, 12:4 (2020), 845–864
Lukyanenko V D., Prigorniy V I., Shishlenin M.A., “Some Features of Solving An Inverse Backward Problem For a Generalized Burgers' Equation”, J. Inverse Ill-Posed Probl., 28:5 (2020), 641–649
Korpusov M.O., Lukyanenko V D., Panin A.A., “Blow-Up For Joseph-Egri Equation: Theoretical Approach and Numerical Analysis”, Math. Meth. Appl. Sci., 43:11 (2020), 6771–6800
Korpusov M.O., Lukyanenko D.V., Panin A.A., “Local Solvability and a Priori Estimates For Classical Solutions to An Equation of Benjamin-Bona-Mahony-Burgers Type”, Math. Meth. Appl. Sci., 43:17 (2020), 9829–9873