Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 9, Pages 1638–1667 (Mi zvmmf415)  

This article is cited in 88 scientific papers (total in 89 papers)

Monotonicity criteria for difference schemes designed for hyperbolic equations

A. S. Kholodovab, Ya. A. Kholodova

a Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700, Russia
b Institute for Computer-Aided Design, Russian Academy of Sciences, Vtoraya Brestskaya ul. 19/18, Moscow, 123056, Russia
References:
Abstract: Previously formulated monotonicity criteria for explicit two-level difference schemes designed for hyperbolic equations (S. K. Godunov's, A. Harten's (TVD schemes), characteristic criteria) are extended to multileveled, including implicit, stencils. The characteristic monotonicity criterion is used to develop a universal algorithm for constructing high-order accurate nonlinear monotone schemes (for an arbitrary form of the desired solution) based on their analysis in the space of grid functions. Several new fourth-to-third-order accurate monotone difference schemes on a compact three-level stencil and nonexpanding (three-point) stencils are proposed for an extended system, which ensures their monotonicity for both the desired function and its derivatives. The difference schemes are tested using the characteristic monotonicity criterion and are extended to systems of hyperbolic equations.
Key words: hyperbolic equations, difference schemes, monotonicity criteria for difference schemes, high-order accurate difference schemes.
Received: 23.01.2006
Revised: 14.04.2006
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 9, Pages 1560–1588
DOI: https://doi.org/10.1134/S0965542506090089
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: A. S. Kholodov, Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 46:9 (2006), 1638–1667; Comput. Math. Math. Phys., 46:9 (2006), 1560–1588
Citation in format AMSBIB
\Bibitem{KhoKho06}
\by A.~S.~Kholodov, Ya.~A.~Kholodov
\paper Monotonicity criteria for difference schemes designed for hyperbolic equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 9
\pages 1638--1667
\mathnet{http://mi.mathnet.ru/zvmmf415}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2287663}
\elib{https://elibrary.ru/item.asp?id=9276148}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 9
\pages 1560--1588
\crossref{https://doi.org/10.1134/S0965542506090089}
\elib{https://elibrary.ru/item.asp?id=13514044}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749009288}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf415
  • https://www.mathnet.ru/eng/zvmmf/v46/i9/p1638
  • This publication is cited in the following 89 articles:
    1. A. Yu. Trynin, “Ob odnom metode resheniya smeshannoi kraevoi zadachi dlya uravneniya parabolicheskogo tipa s pomoschyu operatorov $\mathbb{AT}_{\lambda,j}$”, Izv. vuzov. Matem., 2024, no. 2, 59–80  mathnet  crossref
    2. Evgeniya K. Guseva, Vasily I. Golubev, Viktor P. Epifanov, Igor B. Petrov, Communications in Computer and Information Science, 1914, Mathematical Modeling and Supercomputer Technologies, 2024, 15  crossref
    3. M. D. Bragin, “Actual Accuracy of Linear Schemes of High-Order Approximation in Gasdynamic Simulations”, Comput. Math. and Math. Phys., 64:1 (2024), 138  crossref
    4. A. Yu. Trynin, “On One Method for Solving a Mixed Boundary Value Problem for a Parabolic Type Equation Using Operators $\mathbb{A}{{\mathbb{T}}_{{\lambda ,j}}}$”, Russ Math., 68:2 (2024), 52  crossref
    5. E. K. Guseva, V. I. Golubev, I. B. Petrov, “Investigation of Wave Phenomena During the Seismic Survey in the Permafrost Areas Using Two Approaches to Numerical Modeling”, Lobachevskii J Math, 45:1 (2024), 231  crossref
    6. E. K. Guseva, V. I. Golubev, I. B. Petrov, “Investigation of Wave Phenomena in the Offshore Areas of the Arctic Region in the Process of the Seismic Survey”, Lobachevskii J Math, 45:1 (2024), 223  crossref
    7. Epifanov Viktor Pavlovich, Guseva Evgeniya Kirillovna, Shigaev Nikita Olegovich, Springer Proceedings in Earth and Environmental Sciences, Proceedings of the 9th International Conference on Physical and Mathematical Modelling of Earth and Environmental Processes, 2024, 275  crossref
    8. I. B. Petrov, E. K. Guseva, V. I. Golubev, V. P. Epifanov, “Ice rheology exploration based on numerical simulation of low-speed impact”, Doklady Rossijskoj akademii nauk. Fizika, tehničeskie nauki, 514:1 (2024), 20  crossref
    9. A. V. Favorskaya, I. B. Petrov, “Simulation of Seismic Impact on Multistory Buildings on Piles by Grid-Characteristic Method on Cartesian and Nonconformal Curved Meshes”, Math Models Comput Simul, 16:S1 (2024), S56  crossref
    10. V. E. Karpov, A. I. Lobanov, “Setochno-kharakteristicheskaya raznostnaya skhema dlya resheniya uravneniya Khopfa na osnove dvukh razlichnykh divergentnykh form”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 16:2 (2023), 91–103  mathnet  crossref
    11. E. K. Guseva, V. I. Golubev, I. B. Petrov, “Lineinye kvazimonotonnye i gibridnye setochno-kharakteristicheskie skhemy dlya chislennogo resheniya zadach lineinoi akustiki”, Sib. zhurn. vychisl. matem., 26:2 (2023), 135–147  mathnet  crossref
    12. A. Yu. Trynin, “A method for solution of a mixed boundary value problem for a hyperbolic type equation using the operators $\mathbb{AT}_{\lambda,j}$”, Izv. Math., 87:6 (2023), 1227–1254  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    13. A. Yu. Trynin, “On a method for solving a mixed boundary value problem for a parabolic equation using modified sinc-approximation operators”, Comput. Math. Math. Phys., 63:7 (2023), 1264–1284  mathnet  mathnet  crossref  crossref
    14. I. B. Petrov, V. I. Golubev, A. V. Shevchenko, I. S. Nikitin, “About the boundary condition approximation in the higher-order grid-characteristic schemes”, Dokl. Math., 108:3 (2023), 466–471  mathnet  crossref  crossref  elib
    15. E. K. Guseva, V. I. Golubev, I. B. Petrov, “Linear Quasi-Monotone and Hybrid Grid-Characteristic Schemes for the Numerical Solution of Linear Acoustic Problems1”, Numer. Analys. Appl., 16:2 (2023), 112  crossref
    16. I. B. Petrov, “Grid-characteristic methods. 55 years of developing and solving complex dynamic problems”, CMIT, 6:1 (2023), 6  crossref
    17. E. K. Guseva, V. I. Golubev, I. B. Petrov, “Linear, Quasi-Monotonic and Hybrid Grid-Characteristic Schemes for Hyperbolic Equations”, Lobachevskii J Math, 44:1 (2023), 296  crossref
    18. V. I Golubev, I. S Nikitin, N. G Burago, Yu. A Golubeva, “Yavno-neyavnye skhemy rascheta dinamiki uprugovyazkoplasticheskikh sred s malym vremenem relaksatsii”, Differentsialnye uravneniya, 59:6 (2023), 803  crossref
    19. N. I. Khokhlov, I. B. Petrov, “High-Order Grid-Characteristic Method for Systems of Hyperbolic Equations with Piecewise Constant Coefficients”, Diff Equat, 59:7 (2023), 985  crossref
    20. V. I. Golubev, I. S. Nikitin, N. G. Burago, Yu. A. Golubeva, “Explicit–Implicit Schemes for Calculating the Dynamics of Elastoviscoplastic Media with a Short Relaxation Time”, Diff Equat, 59:6 (2023), 822  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:1256
    Full-text PDF :765
    References:108
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025