Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2009, Volume 49, Number 2, Pages 293–300(Mi zvmmf40)
This article is cited in 1 scientific paper (total in 1 paper)
The existence of a generalized fourier transform for a solution as a radiation condition for a class of problems generalizing oscillation excitation problems in regular waveguides
Abstract:
For a second-order inhomogeneous differential equation defined on the real axis and such that its right-hand side and solutions are functions in a Hilbert space, it is shown that the existence of a generalized Fourier transform of the solution is a correct radiation condition if the right-hand side is sufficiently smooth and compactly supported.
Citation:
A. N. Bogolyubov, M. D. Malykh, Yu. V. Mukhartova, “The existence of a generalized fourier transform for a solution as a radiation condition for a class of problems generalizing oscillation excitation problems in regular waveguides”, Zh. Vychisl. Mat. Mat. Fiz., 49:2 (2009), 293–300; Comput. Math. Math. Phys., 49:2 (2009), 284–291
\Bibitem{BogMalMuk09}
\by A.~N.~Bogolyubov, M.~D.~Malykh, Yu.~V.~Mukhartova
\paper The existence of a~generalized fourier transform for a~solution as a~radiation condition for a~class of problems generalizing oscillation excitation problems in regular waveguides
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 2
\pages 293--300
\mathnet{http://mi.mathnet.ru/zvmmf40}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2555674}
\zmath{https://zbmath.org/?q=an:05649763}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 2
\pages 284--291
\crossref{https://doi.org/10.1134/S0965542509020080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000263968600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-62149114839}
Linking options:
https://www.mathnet.ru/eng/zvmmf40
https://www.mathnet.ru/eng/zvmmf/v49/i2/p293
This publication is cited in the following 1 articles:
N. A. Bogolyubov, Yu. V. Mukhartova, “Spectral problem in a waveguide with homogeneous bi-isotropic filling”, Comput. Math. Math. Phys., 54:6 (2014), 977–983