|
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 1990, Volume 30, Number 6, Pages 803–816
(Mi zvmmf3242)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Non-linear spectra of matrices and extremal problems
A. P. Buslaev Moscow
Abstract:
Theoretical questions and the computational aspects of the search for the spectral values $\lambda$ and vectors $x\in\mathbb R^m\setminus\{0\}$ of a system $A^{\mathrm T}(Ax)_{(q)}=\lambda^q(x)_{(p)}$, where $A$ is a $k\times m$ matrix, $1\le p$, $q<\infty$ are presented. When $p=q=2$ this is simply the problem of determining the singular values of $A$. Nonlinear systems $((p-2)^2+(q-2)^2\ne0)$ arise in many fields of analysis, mechanics and approximation theory.
Received: 27.06.1989
Citation:
A. P. Buslaev, “Non-linear spectra of matrices and extremal problems”, Zh. Vychisl. Mat. Mat. Fiz., 30:6 (1990), 803–816; U.S.S.R. Comput. Math. Math. Phys., 30:3 (1990), 117–126
Linking options:
https://www.mathnet.ru/eng/zvmmf3242 https://www.mathnet.ru/eng/zvmmf/v30/i6/p803
|
Statistics & downloads: |
Abstract page: | 400 | Full-text PDF : | 125 | References: | 80 | First page: | 1 |
|