Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2024, Volume 64, Number 8, Pages 1424–1436
DOI: https://doi.org/10.31857/S0044466924080076
(Mi zvmmf11810)
 

General numerical methods

Estimates of the convergence of iterative methods for numerical simulation of 3D processes in magnetohydrodynamics

A. Yu. Krukovskii, I. V. Popov, Yu. A. Poveschenko

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047, Moscow, Russia
Abstract: Convergence of iterative processes applied to implicit completely conservative difference schemes of three-dimensional magnetohydrodynamics in the framework of methods of separate and combined solution of groups of difference equations that are split by physical processes is studied. Estimates of the convergence of iterative processes for the numerical methods considered in this work are obtained. The scope of both the combined and separate methods for solving the 3D difference equations of magnetohydrodynamics is investigated. Taking into account the fact that the study of the presented algorithms is mainly of a qualitative nature, the validity of the obtained estimates is confirmed by numerical experiments, and both model and real problems are considered. Note that the obtained estimates of convergence of the iterative processes make it possible to choose the optimal numerical method for solving difference equations of 3D magnetohydrodynamics at any time step.
Key words: equations of 3D magnetohydrodynamics, implicit completely conservative difference scheme, convergence of iterative process.
Received: 15.04.2024
Revised: 15.04.2024
Accepted: 05.05.2024
English version:
Computational Mathematics and Mathematical Physics, 2024, Volume 64, Issue 8, Pages 1667–1679
DOI: https://doi.org/10.1134/S0965542524700866
Bibliographic databases:
Document Type: Article
UDC: 519.635
Language: Russian
Citation: A. Yu. Krukovskii, I. V. Popov, Yu. A. Poveschenko, “Estimates of the convergence of iterative methods for numerical simulation of 3D processes in magnetohydrodynamics”, Zh. Vychisl. Mat. Mat. Fiz., 64:8 (2024), 1424–1436; Comput. Math. Math. Phys., 64:8 (2024), 1667–1679
Citation in format AMSBIB
\Bibitem{KruPopPov24}
\by A.~Yu.~Krukovskii, I.~V.~Popov, Yu.~A.~Poveschenko
\paper Estimates of the convergence of iterative methods for numerical simulation of 3D processes in magnetohydrodynamics
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2024
\vol 64
\issue 8
\pages 1424--1436
\mathnet{http://mi.mathnet.ru/zvmmf11810}
\crossref{https://doi.org/10.31857/S0044466924080076}
\elib{https://elibrary.ru/item.asp?id=75224105}
\transl
\jour Comput. Math. Math. Phys.
\yr 2024
\vol 64
\issue 8
\pages 1667--1679
\crossref{https://doi.org/10.1134/S0965542524700866}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11810
  • https://www.mathnet.ru/eng/zvmmf/v64/i8/p1424
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025