Loading [MathJax]/jax/output/CommonHTML/jax.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2024, Volume 64, Number 7, Pages 1281–1304
DOI: https://doi.org/10.31857/S0044466924070127
(Mi zvmmf11792)
 

Mathematical physics

KP1-scheme for acceleration of upscatter iterations over the neutron thermalization region and the fission source in solving a subcritical boundary value problem

A. M. Voloshchenko

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047, Moscow, Russia
Abstract: For the transport equation in three-dimensional r, θ, z geometry, a KP1-scheme is constructed for accelerating the convergence of upscatter iterations over the neutron thermalization region and the fission source in solving a subcritical boundary value problem, consistent with the Weighted Diamond Differencing (WDD) scheme, and its generalization to the case of nodal Linear Discontinues (LD) and Linear Best (LB) schemes of the 3rd and 4th order of accuracy in spatial variables is considered. To solve the system for accelerating corrections, an algorithm based on the use of the cyclic splitting method was used, similar to that used earlier when constructing the KP1-scheme for accelerating the convergence of inner iterations. An algorithm for determining the energy dependence for accelerating corrections of the KP1-scheme for accelerating the convergence of upscatter iterations is considered. The choice of a criterion for the convergence of upscatter iterations is considered, and a criterion integral over up-scattered thermal neutrons for the convergence of upscatter iterations over the region of neutron thermalization is proposed. A modification of the algorithm for the case of three-dimensional x, y, z geometry is considered. Numerical examples of using the KP1-scheme for accelerating the convergence of upscatter iterations to solve typical problems of neutron transport in three-dimensional geometry are given.
Key words: KP1-scheme for acceleration of upscatter iterations, choice of spectral function and criterion for convergence of upscatter iterations, transport equation.
Received: 07.02.2024
English version:
Computational Mathematics and Mathematical Physics, 2024, Volume 64, Issue 7, Pages 1564–1586
DOI: https://doi.org/10.1134/S0965542524700672
Bibliographic databases:
Document Type: Article
UDC: 519.635
Language: Russian
Citation: A. M. Voloshchenko, “KP1-scheme for acceleration of upscatter iterations over the neutron thermalization region and the fission source in solving a subcritical boundary value problem”, Zh. Vychisl. Mat. Mat. Fiz., 64:7 (2024), 1281–1304; Comput. Math. Math. Phys., 64:7 (2024), 1564–1586
Citation in format AMSBIB
\Bibitem{Vol24}
\by A.~M.~Voloshchenko
\paper $KP_1$-scheme for acceleration of upscatter iterations over the neutron thermalization region and the fission source in solving a subcritical boundary value problem
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2024
\vol 64
\issue 7
\pages 1281--1304
\mathnet{http://mi.mathnet.ru/zvmmf11792}
\crossref{https://doi.org/10.31857/S0044466924070127}
\elib{https://elibrary.ru/item.asp?id=75206876}
\transl
\jour Comput. Math. Math. Phys.
\yr 2024
\vol 64
\issue 7
\pages 1564--1586
\crossref{https://doi.org/10.1134/S0965542524700672}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11792
  • https://www.mathnet.ru/eng/zvmmf/v64/i7/p1281
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025