Loading [MathJax]/jax/output/CommonHTML/jax.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 8, Pages 1353–1362
DOI: https://doi.org/10.31857/S0044466921060077
(Mi zvmmf11280)
 

This article is cited in 8 scientific papers (total in 8 papers)

Mathematical physics

Numerical-statistical and analytical study of asymptotics for the average multiplication particle flow in a random medium

G. Z. Lotovaa, G. A. Mikhailovb

a Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
b Novosibirsk State University, 630090, Novosibirsk, Russia
Citations (8)
Abstract: It is well known that, under rather general conditions, the particle flux density in a multiplying medium is asymptotically exponential in time t with a parameter λ, i.e., with an exponent λt. If the medium is random, then λ is a random variable, and the time asymptotics of the average number of particles (over medium realizations) can be estimated in some approximation by averaging the exponent with respect to the distribution of λ. Assuming that this distribution is Gaussian, an asymptotic “superexponential” estimate for the average flux expressed by an exponential with the exponent tEλ+t2Dλ/2 can be obtained in this way. To verify this estimate in a numerical experiment, a procedure is developed for computing the probabilistic moments of λ based on randomizations of Fourier approximations of special nonlinear functionals. The derived new formula is used to study the COVID-19 pandemic.
Key words: statistical modeling, time asymptotics, random medium, particle flow, COVID-19.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00356
18-01-00599
This work was supported in part by the Russian Foundation for Basic Research, project nos. 18-01-00356, 18-01-00599.
Received: 11.07.2020
Revised: 21.10.2020
Accepted: 11.02.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 8, Pages 1330–1338
DOI: https://doi.org/10.1134/S0965542521060075
Bibliographic databases:
Document Type: Article
UDC: 519.676
Language: Russian
Citation: G. Z. Lotova, G. A. Mikhailov, “Numerical-statistical and analytical study of asymptotics for the average multiplication particle flow in a random medium”, Zh. Vychisl. Mat. Mat. Fiz., 61:8 (2021), 1353–1362; Comput. Math. Math. Phys., 61:8 (2021), 1330–1338
Citation in format AMSBIB
\Bibitem{LotMik21}
\by G.~Z.~Lotova, G.~A.~Mikhailov
\paper Numerical-statistical and analytical study of asymptotics for the average multiplication particle flow in a random medium
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 8
\pages 1353--1362
\mathnet{http://mi.mathnet.ru/zvmmf11280}
\crossref{https://doi.org/10.31857/S0044466921060077}
\elib{https://elibrary.ru/item.asp?id=46351131}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 8
\pages 1330--1338
\crossref{https://doi.org/10.1134/S0965542521060075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000697201600009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115198810}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11280
  • https://www.mathnet.ru/eng/zvmmf/v61/i8/p1353
  • This publication is cited in the following 8 articles:
    1. Olga Krivorotko, Sergey Kabanikhin, “Artificial intelligence for COVID-19 spread modeling”, Journal of Inverse and Ill-posed Problems, 32:2 (2024), 297  crossref
    2. G. A. Mikhailov, G. Z. Lotova, I. N. Medvedev, “Effektivno realizuemye priblizhennye modeli sluchainykh funktsii v stokhasticheskikh zadachakh teorii perenosa chastits”, Sib. zhurn. vychisl. matem., 27:2 (2024), 189–209  mathnet  crossref
    3. G. A. Mikhailov, G. Z. Lotova, I. N. Medvedev, “Efficiently Realized Approximate Models of Random Functions in Stochastic Problems of the Theory of Particle Transfer”, Numer. Analys. Appl., 17:2 (2024), 152  crossref
    4. G. Z. Lotova, G. A. Mikhailov, “Issledovanie sverkheksponentsialnogo rosta srednego potoka chastits v sluchainoi razmnozhayuschei srede”, Sib. zhurn. vychisl. matem., 26:4 (2023), 401–413  mathnet  crossref
    5. O. I. Krivorotko, S. I. Kabanikhin, “O matematicheskom modelirovanii COVID-19”, Sib. elektron. matem. izv., 20:2 (2023), 1211–1268  mathnet  crossref
    6. G. A. Mikhailov, G. Z. Lotova, “Numerical-statistical investigation of superexponential growth of the mean particle flux with multiplication in a homogeneous random medium”, Dokl. Math., 108:3 (2023), 519–523  mathnet  crossref  crossref  elib
    7. Olga Krivorotko, Mariia Sosnovskaia, Sergey Kabanikhin, “Agent-based mathematical model of COVID-19 spread in Novosibirsk region: Identifiability, optimization and forecasting”, Journal of Inverse and Ill-posed Problems, 2023  crossref
    8. G. Z. Lotova, G. A. Mikhailov, “Investigation of Overexponential Growth of Mean Particle Flux with Multiplication in Random Medium”, Numer. Analys. Appl., 16:4 (2023), 337  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:113
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025