Abstract:
It is well known that, under rather general conditions, the particle flux density in a multiplying medium is asymptotically exponential in time t with a parameter λ, i.e., with an exponent λt. If the medium is random, then λ is a random variable, and the time asymptotics of the average number of particles (over medium realizations) can be estimated in some approximation by averaging the exponent with respect to the distribution of λ. Assuming that this distribution is Gaussian, an asymptotic “superexponential” estimate for the average flux expressed by an exponential with the exponent tEλ+t2Dλ/2 can be obtained in this way. To verify this estimate in a numerical experiment, a procedure is developed for computing the probabilistic moments of λ based on randomizations of Fourier approximations of special nonlinear functionals. The derived new formula is used to study the COVID-19 pandemic.
Key words:
statistical modeling, time asymptotics, random medium, particle flow, COVID-19.
Citation:
G. Z. Lotova, G. A. Mikhailov, “Numerical-statistical and analytical study of asymptotics for the average multiplication particle flow in a random medium”, Zh. Vychisl. Mat. Mat. Fiz., 61:8 (2021), 1353–1362; Comput. Math. Math. Phys., 61:8 (2021), 1330–1338
\Bibitem{LotMik21}
\by G.~Z.~Lotova, G.~A.~Mikhailov
\paper Numerical-statistical and analytical study of asymptotics for the average multiplication particle flow in a random medium
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 8
\pages 1353--1362
\mathnet{http://mi.mathnet.ru/zvmmf11280}
\crossref{https://doi.org/10.31857/S0044466921060077}
\elib{https://elibrary.ru/item.asp?id=46351131}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 8
\pages 1330--1338
\crossref{https://doi.org/10.1134/S0965542521060075}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000697201600009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115198810}
Linking options:
https://www.mathnet.ru/eng/zvmmf11280
https://www.mathnet.ru/eng/zvmmf/v61/i8/p1353
This publication is cited in the following 8 articles:
Olga Krivorotko, Sergey Kabanikhin, “Artificial intelligence for COVID-19 spread modeling”, Journal of Inverse and Ill-posed Problems, 32:2 (2024), 297
G. A. Mikhailov, G. Z. Lotova, I. N. Medvedev, “Effektivno realizuemye priblizhennye modeli sluchainykh funktsii v stokhasticheskikh zadachakh teorii perenosa chastits”, Sib. zhurn. vychisl. matem., 27:2 (2024), 189–209
G. A. Mikhailov, G. Z. Lotova, I. N. Medvedev, “Efficiently Realized Approximate Models of Random Functions in Stochastic Problems of the Theory of Particle Transfer”, Numer. Analys. Appl., 17:2 (2024), 152
G. Z. Lotova, G. A. Mikhailov, “Issledovanie sverkheksponentsialnogo rosta srednego potoka chastits v sluchainoi razmnozhayuschei srede”, Sib. zhurn. vychisl. matem., 26:4 (2023), 401–413
O. I. Krivorotko, S. I. Kabanikhin, “O matematicheskom modelirovanii COVID-19”, Sib. elektron. matem. izv., 20:2 (2023), 1211–1268
G. A. Mikhailov, G. Z. Lotova, “Numerical-statistical investigation of superexponential growth of the mean particle flux with multiplication in a homogeneous random medium”, Dokl. Math., 108:3 (2023), 519–523
Olga Krivorotko, Mariia Sosnovskaia, Sergey Kabanikhin, “Agent-based mathematical model of COVID-19 spread in Novosibirsk region: Identifiability, optimization and forecasting”, Journal of Inverse and Ill-posed Problems, 2023
G. Z. Lotova, G. A. Mikhailov, “Investigation of Overexponential Growth of Mean Particle Flux with Multiplication in Random Medium”, Numer. Analys. Appl., 16:4 (2023), 337