Abstract:
The paper discusses the specificities of solving the inverse problem of reconstructing the magnetic susceptibility using complete tensor magnetic gradient data. This problem reduces to solving a system of two three-dimensional Fredholm integral equations of the first kind, one of which relates the magnetic susceptibility of a bounded body to the magnetic field induced by it and the other, to the full magnetic induction gradient tensor. For a series of model examples, it is demonstrated that the use of the full magnetic induction gradient tensor significantly improves the quality of the reconstructed function that determines the magnetic susceptibility.
Key words:
magnetostatics, magnetic susceptibility, full magnetic induction gradient tensor, inverse problem.
Ministry of Science and Technology (MOST) of China
2018YFC0603500
The research was carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University [22, 23].
Citation:
Y. Wang, I. I. Kolotov, D. V. Lukyanenko, A. G. Yagola, “Reconstruction of magnetic susceptibility using full magnetic gradient data”, Zh. Vychisl. Mat. Mat. Fiz., 60:6 (2020), 1027–1034; Comput. Math. Math. Phys., 60:6 (2020), 1000–1007
\Bibitem{WanKolLuk20}
\by Y.~Wang, I.~I.~Kolotov, D.~V.~Lukyanenko, A.~G.~Yagola
\paper Reconstruction of magnetic susceptibility using full magnetic gradient data
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 6
\pages 1027--1034
\mathnet{http://mi.mathnet.ru/zvmmf11092}
\crossref{https://doi.org/10.31857/S0044466920060101}
\elib{https://elibrary.ru/item.asp?id=42809599}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 6
\pages 1000--1007
\crossref{https://doi.org/10.1134/S096554252006010X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000555591800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088933600}
Linking options:
https://www.mathnet.ru/eng/zvmmf11092
https://www.mathnet.ru/eng/zvmmf/v60/i6/p1027
This publication is cited in the following 6 articles:
Igor Kolotov, Dmitry Lukyanenko, Inna Stepanova, Yanfei Wang, Anatoly Yagola, “Recovering the Near-Surface Magnetic Image of Mercury from Satellite Observations”, Remote Sensing, 15:8 (2023), 2125
I. E. Stepanova, A. V. Shchepetilov, P. S. Mikhailov, “Analytical Models of Time-Dependent Physical Fields of the Earth: Local Version”, Fizika zemli, 2023:2 (2023), 20
I. E. Stepanova, A. V. Shchepetilov, P. S. Mikhailov, “Analytical Models of Time-Dependent Physical Fields of the Earth: Local Version”, Izv., Phys. Solid Earth, 59:2 (2023), 120
Stepanova I.E., Gudkova T.V., Salnikov A.M., Batov A.V., “A New Approach to Analytical Modeling of Mars'S Magnetic Field”, Inverse Probl. Sci. Eng., 30:1 (2022), 41–60
I. E. Stepanova, A. V. Shchepetilov, P. S. Mikhailov, “Analytical Models of the Physical Fields of the Earth in Regional Version with Ellipticity”, Izv., Phys. Solid Earth, 58:3 (2022), 406
I. Kolotov, D. Lukyanenko, I. Stepanova, Ya. Wang, A. Yagola, “Recovering the magnetic image of Mars from satellite observations”, J. Imaging, 07:11 (2021), 234