Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 4, Pages 752–764
DOI: https://doi.org/10.31857/S004446692004016X
(Mi zvmmf11072)
 

This article is cited in 13 scientific papers (total in 13 papers)

Application of the Nesvetay code for solving three-dimensional high-altitude aerodynamics problems

V. A. Titarev

Federal Research Center "Computer Science and Control", Russian Academy of Sciences, Moscow, 119333 Russia
Citations (13)
References:
Abstract: A survey of the capabilities of the Nesvetay code as applied to computing the flow of a high-speed monatomic gas around objects of irregular shape for large flight altitudes is given. An implicit numerical method on an arbitrary unstructured grid and a two-level approach to the organization of parallel computations are described. This code is compared with the well-known MONACO and SMILE codes that implement the direct simulation Monte Carlo method.
Key words: kinetic equation, $S$-model, rarefied gas, computational aerodynamics, unstructured mesh, supercomputer computations.
Funding agency Grant number
Russian Foundation for Basic Research 18-08-00501
18-07-01500
This work was supported by the Russian Foundation for Basic Research, project nos. 18-08-00501 and 18-07-01500.
Received: 21.10.2019
Revised: 21.10.2019
Accepted: 16.12.2019
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 4, Pages 737–748
DOI: https://doi.org/10.1134/S0965542520040168
Bibliographic databases:
Document Type: Article
UDC: 519.683
Language: Russian
Citation: V. A. Titarev, “Application of the Nesvetay code for solving three-dimensional high-altitude aerodynamics problems”, Zh. Vychisl. Mat. Mat. Fiz., 60:4 (2020), 752–764; Comput. Math. Math. Phys., 60:4 (2020), 737–748
Citation in format AMSBIB
\Bibitem{Tit20}
\by V.~A.~Titarev
\paper Application of the Nesvetay code for solving three-dimensional high-altitude aerodynamics problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 4
\pages 752--764
\mathnet{http://mi.mathnet.ru/zvmmf11072}
\crossref{https://doi.org/10.31857/S004446692004016X}
\elib{https://elibrary.ru/item.asp?id=42605099}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 4
\pages 737--748
\crossref{https://doi.org/10.1134/S0965542520040168}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000539033500018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086157578}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11072
  • https://www.mathnet.ru/eng/zvmmf/v60/i4/p752
  • This publication is cited in the following 13 articles:
    1. Rui Zhang, Sha Liu, Jianfeng Chen, Hao Jin, Congshan Zhuo, Chengwen Zhong, “Implicit unified gas-kinetic scheme for steady state solution of hypersonic thermodynamic non-equilibrium flows”, Communications in Nonlinear Science and Numerical Simulation, 140 (2025), 108367  crossref
    2. V. A. Titarev, A. A. Morozov, 2ND INTERNATIONAL CONFERENCE ON ADVANCED EARTH SCIENCE AND FOUNDATION ENGINEERING (ICASF 2023): Advanced Earth Science and Foundation Engineering, 3050, 2ND INTERNATIONAL CONFERENCE ON ADVANCED EARTH SCIENCE AND FOUNDATION ENGINEERING (ICASF 2023): Advanced Earth Science and Foundation Engineering, 2024, 060008  crossref
    3. T. Dzanic, F. D. Witherden, L. Martinelli, “Validation of wall boundary conditions for simulating complex fluid flows via the Boltzmann equation: Momentum transport and skin friction”, Physics of Fluids, 36:1 (2024)  crossref
    4. A. A. Morozov, V. A. Titarev, “Kinetic study of time-of-flight distributions during pulsed laser evaporation into vacuum”, Physics of Fluids, 36:11 (2024)  crossref
    5. Peng Tian, Kaikai Feng, Qihan Ma, Zhihui Li, Jun Zhang, “Unified stochastic particle simulation of polyatomic gas flows using SPARTACUS”, Computers & Fluids, 265 (2023), 105987  crossref
    6. N. Yu. Bykov, S. A. Fyodorov, “Data parallelization algorithms for the direct simulation Monte Carlo method for rarefied gas flows on the basis of OpenMP technology”, Comput. Math. Math. Phys., 63:12 (2023), 2275–2296  mathnet  mathnet  crossref  crossref
    7. A. A. Morozov, V. A. Titarev, “Evolution of the shape of a gas cloud during pulsed laser evaporation into vacuum: Direct simulation Monte Carlo and the solution of a model equation”, Comput. Math. Math. Phys., 63:12 (2023), 2244–2256  mathnet  mathnet  crossref  crossref
    8. I. V. Voronich, V. A. Titarev, “Numerical analysis of rarefied gas flow through a system of short channels”, Comput. Math. Math. Phys., 63:12 (2023), 2227–2243  mathnet  mathnet  crossref  crossref
    9. Dingwu Jiang, Pei Wang, Jin Li, Meiliang Mao, “Nonlinear Modeling Study of Aerodynamic Characteristics of an X38-like Vehicle at Strong Viscous Interaction Regions”, Entropy, 24:6 (2022), 836  crossref
    10. Alexey Morozov, Vladimir Titarev, “Planar Gas Expansion under Intensive Nanosecond Laser Evaporation into Vacuum as Applied to Time-of-Flight Analysis”, Entropy, 24:12 (2022), 1738  crossref
    11. A. A. Morozov, V. A. Titarev, “Dynamics of planar gas expansion during nanosecond laser evaporation into a low-pressure background gas”, Physics of Fluids, 34:9 (2022)  crossref
    12. V.A. Titarev, A.A. Morozov, “Arbitrary Lagrangian-Eulerian discrete velocity method with application to laser-induced plume expansion”, Applied Mathematics and Computation, 429 (2022), 127241  crossref
    13. A. A. Morozov, A. A. Frolova, V. A. Titarev, “On different kinetic approaches for computing planar gas expansion under pulsed evaporation into vacuum”, Phys. Fluids, 32:11 (2020), 112005  crossref  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:120
    References:37
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025