Loading [MathJax]/jax/output/CommonHTML/jax.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 11, Pages 1915–1947
DOI: https://doi.org/10.1134/S0044466919110073
(Mi zvmmf10983)
 

This article is cited in 1 scientific paper (total in 1 paper)

Potential theory for a nonlinear equation of the Benjamin–Bona–Mahoney–Burgers type

M. O. Korpusovab, D. K. Yablochkinab

a Faculty of Physics, Lomonosov Moscow State University, Moscow, 119992 Russia
b RUDN University, Moscow, 117198 Russia
Citations (1)
References:
Abstract: For the linear part of a nonlinear equation related to the well-known Benjamin–Bona–Mahoney–Burgers (BBMB) equation, a fundamental solution is constructed, which is combined with the second Green formula to obtain a third Green formula in a bounded domain. Then a third Green formula in the entire space is derived by passage to the limit in some class of functions. The properties of the potentials entering the Green formula in the entire space are examined. The Cauchy problem for a nonlinear BBMB-type equation is considered. It is proved that finding its classical solution is equivalent to solving a nonlinear integral equation derived from the third Green formula. The unique local-in-time solvability of this integral equation is proved by applying the contraction mapping principle. Next, the local-in-time classical solvability of the Cauchy problem is proved using the properties of potentials. Finally, the nonlinear capacity method is used to obtain a global-in-time a priori estimate for classical solutions of the Cauchy problem.
Key words: potential theory, Green formulas, a priori estimates.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 5-100
This work was supported by the RUDN University, program no. 5-100.
Received: 05.06.2019
Revised: 05.06.2019
Accepted: 08.07.2019
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 11, Pages 1848–1880
DOI: https://doi.org/10.1134/S0965542519110071
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: M. O. Korpusov, D. K. Yablochkin, “Potential theory for a nonlinear equation of the Benjamin–Bona–Mahoney–Burgers type”, Zh. Vychisl. Mat. Mat. Fiz., 59:11 (2019), 1915–1947; Comput. Math. Math. Phys., 59:11 (2019), 1848–1880
Citation in format AMSBIB
\Bibitem{KorYab19}
\by M.~O.~Korpusov, D.~K.~Yablochkin
\paper Potential theory for a nonlinear equation of the Benjamin--Bona--Mahoney--Burgers type
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 11
\pages 1915--1947
\mathnet{http://mi.mathnet.ru/zvmmf10983}
\crossref{https://doi.org/10.1134/S0044466919110073}
\elib{https://elibrary.ru/item.asp?id=41044797}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 11
\pages 1848--1880
\crossref{https://doi.org/10.1134/S0965542519110071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000510740900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85076420706}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10983
  • https://www.mathnet.ru/eng/zvmmf/v59/i11/p1915
  • This publication is cited in the following 1 articles:
    1. M. O. Korpusov, D. K. Yablochkin, “Potential theory and Schauder estimate in Hölder spaces for (3+1)-dimensional Benjamin–Bona–Mahoney–Burgers equation”, Comput. Math. Math. Phys., 61:8 (2021), 1289–1314  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:278
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025