Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 5, Pages 867–888
DOI: https://doi.org/10.1134/S0044466919050144
(Mi zvmmf10899)
 

This article is cited in 8 scientific papers (total in 8 papers)

Spectral analysis of model Couette flows in application to the ocean

S. L. Skorokhodova, N. P. Kuzminab

a Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control", Russian Academy of Sciences, Moscow, 119333 Russia
b Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, 117997 Russia
Citations (8)
References:
Abstract: A method for analysis of the evolution equation of potential vorticity in the quasi-geostrophic approximation with allowance for vertical diffusion of mass and momentum for analyzing the stability of small perturbations of ocean currents with a linear vertical profile of the main flow is developed. The problem depends on several dimensionless parameters and reduces to solving a spectral non-self-adjoint problem containing a small parameter multiplying the highest derivative. A specific feature of this problem is that the spectral parameter enters into both the equation and the boundary conditions. Depending on the types of the boundary conditions, problems I and II, differing in specifying either a perturbations of pressure or its second derivative, are studied. Asymptotic expansions of the eigenfunctions and eigenvalues for small wavenumbers k are found. It is found that, in problem I, as k+0, there are two finite eigenvalues and a countable set of unlimitedly increasing eigenvalues lying on the line Re(c)=12. In problem II, as k+0, there are only unlimitedly increasing eigenvalues. A high-precision analytical-numerical method for calculating the eigenfunctions and eigenvalues of both problems for a wide range of physical parameters and wavenumbers k is developed. It is shown that, with variation in the wavenumber k, some pairs of eigenvalues form double eigenvalues, which, with increasing k, split into simple eigenvalues, symmetric with respect to the line Re(c)=12. A large number of simple and double eigenvalues are calculated with high accuracy, and the trajectories of eigenvalues with variation in k, as well as the dependence of the flow instability on the problem parameters, are analyzed.
Key words: spectral non-self-adjoint problem, Wronskian of a system, Newton method, asymptotic expansions, double eigenvalues.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations
0149-2019-0013
This research was carried out in the framework of the state assignment of the Federal Research “Center Computer Science and Control” of the Russian Academy of Sciences and in the framework of the state assignment of the Shirshov Institute of Oceanology of the Russian Academy of Sciences (theme no. 0149-2019-0003).
Received: 24.12.2018
Revised: 11.01.2019
Accepted: 11.01.2019
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 5, Pages 815–835
DOI: https://doi.org/10.1134/S0965542519050142
Bibliographic databases:
Document Type: Article
UDC: 517.63
Language: Russian
Citation: S. L. Skorokhodov, N. P. Kuzmina, “Spectral analysis of model Couette flows in application to the ocean”, Zh. Vychisl. Mat. Mat. Fiz., 59:5 (2019), 867–888; Comput. Math. Math. Phys., 59:5 (2019), 815–835
Citation in format AMSBIB
\Bibitem{SkoKuz19}
\by S.~L.~Skorokhodov, N.~P.~Kuzmina
\paper Spectral analysis of model Couette flows in application to the ocean
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 5
\pages 867--888
\mathnet{http://mi.mathnet.ru/zvmmf10899}
\crossref{https://doi.org/10.1134/S0044466919050144}
\elib{https://elibrary.ru/item.asp?id=37310692}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 5
\pages 815--835
\crossref{https://doi.org/10.1134/S0965542519050142}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472151500012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067622551}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10899
  • https://www.mathnet.ru/eng/zvmmf/v59/i5/p867
  • This publication is cited in the following 8 articles:
    1. S. L. Skorokhodov, N. P. Kuzmina, “Analytical-Numerical Method for Solving the Spectral Problem in a Model of Geostrophic Ocean Currents”, Comput. Math. and Math. Phys., 64:6 (2024), 1240  crossref
    2. S. L. Skorokhodov, N. P. Kuzmina, “Analytical-numerical method for solving the spectral problem in a model of geostrophic ocean currents”, Comput. Math. Math. Phys., 64:6 (2024), 1240–1253  mathnet  mathnet  crossref  crossref
    3. N. P. Kuzmina, S. L. Skorokhodov, N. V. Zhurbas, D. A. Lyzhkov, “On the Types of Instability of a Geostrophic Current with a Vertical Parabolic Profile of Velocity”, Izvestiya Rossiiskoi akademii nauk. Fizika atmosfery i okeana, 59:2 (2023), 230  crossref
    4. N. P. Kuzmina, S. L. Skorokhodov, N. V. Zhurbas, D. A. Lyzhkov, “On the Types of Instability of a Geostrophic Current with a Vertical Parabolic Profile of Velocity”, Izv. Atmos. Ocean. Phys., 59:2 (2023), 201  crossref
    5. S. L. Skorokhodov, N. P. Kuzmina, “Analytical-numerical method for analyzing small perturbations of geostrophic ocean currents with a general parabolic vertical profile of velocity”, Comput. Math. Math. Phys., 62:12 (2022), 2058–2068  mathnet  mathnet  crossref  crossref
    6. S. L. Skorokhodov, N. P. Kuzmina, “Spectral analysis of small perturbations of geostrophic currents with a parabolic vertical profile of velocity as applied to the ocean”, Comput. Math. Math. Phys., 61:12 (2021), 1966–1979  mathnet  mathnet  crossref  crossref  isi  scopus
    7. N. P. Kuzmina, S. L. Skorokhodov, V N. Zhurbas , D. A. Lyzhkov, “Effects of friction and buoyancy diffusion on the dynamics of geostrophic oceanic currents with a linear vertical velocity profile”, Izv. Atmos. Ocean. Phys., 56:6 (2020), 591–602  crossref  isi
    8. S. L. Skorokhodov, N. P. Kuzmina, “On the influence of the beta effect on the spectral characteristics of unstable perturbations of ocean currents”, Comput. Math. Math. Phys., 60:11 (2020), 1900–1912  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:213
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025