Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 3, Pages 481–493
DOI: https://doi.org/10.1134/S0044466919030153
(Mi zvmmf10865)
 

This article is cited in 15 scientific papers (total in 15 papers)

Conditions for $L^2$-dissipativity of linearized explicit difference schemes with regularization for $\mathrm{1D}$ barotropic gas dynamics equations

A. A. Zlotnik, T. A. Lomonosov

National Research University Higher School of Economics, Moscow, 101000 Russia
Citations (15)
References:
Abstract: Explicit two-level in time and symmetric in space difference schemes constructed by approximating the 1D barotropic quasi-gas-/quasi-hydrodynamic systems of equations are studied. The schemes are linearized about a constant solution with a nonzero velocity, and, for them, necessary and sufficient conditions for the ${{L}^{2}}$ -dissipativity of solutions to the Cauchy problem are derived depending on the Mach number. These conditions differ from one another by at most twice. The results substantially develop the ones known for the linearized Lax–Wendroff scheme. Numerical experiments are performed to analyze the applicability of the found conditions in the nonlinear formulation to several schemes for different Mach numbers.
Key words: equations of one-dimensional barotropic gas dynamics, quasi-gasdynamic system of equations, explicit two-level difference schemes, stability, $L^2$-dissipativity.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00262
18-01-00587_а
This work was supported by the Russian Foundation for Basic Research, project nos. 19-01-00262 and 18-01-00587.
Received: 12.06.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 3, Pages 452–464
DOI: https://doi.org/10.1134/S0965542519030151
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: A. A. Zlotnik, T. A. Lomonosov, “Conditions for $L^2$-dissipativity of linearized explicit difference schemes with regularization for $\mathrm{1D}$ barotropic gas dynamics equations”, Zh. Vychisl. Mat. Mat. Fiz., 59:3 (2019), 481–493; Comput. Math. Math. Phys., 59:3 (2019), 452–464
Citation in format AMSBIB
\Bibitem{ZloLom19}
\by A.~A.~Zlotnik, T.~A.~Lomonosov
\paper Conditions for $L^2$-dissipativity of linearized explicit difference schemes with regularization for $\mathrm{1D}$ barotropic gas dynamics equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 3
\pages 481--493
\mathnet{http://mi.mathnet.ru/zvmmf10865}
\crossref{https://doi.org/10.1134/S0044466919030153}
\elib{https://elibrary.ru/item.asp?id=37109576}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 3
\pages 452--464
\crossref{https://doi.org/10.1134/S0965542519030151}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000469870600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85061576792}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10865
  • https://www.mathnet.ru/eng/zvmmf/v59/i3/p481
  • This publication is cited in the following 15 articles:
    1. Vladislav Balashov, Evgeny Savenkov, Aleksey Khlyupin, Kirill M. Gerke, “Two-phase regularized phase-field density gradient Navier–Stokes based flow model: Tuning for microfluidic and digital core applications”, Journal of Computational Physics, 2024, 113554  crossref
    2. A. A. Zlotnik, T. A. Lomonosov, “On $L^2$-dissipativity of a linearized scheme on staggered meshes with a regularization for 1D barotropic gas dynamics equations”, Comput. Math. Math. Phys., 62:12 (2022), 1817–1837  mathnet  mathnet  crossref  crossref
    3. A. A. Zlotnik, T. A. Lomonosov, “$L^2$-dissipativity of finite-difference schemes for $\mathrm{1D}$ regularized barotropic gas dynamics equations at small Mach numbers”, Math. Models Comput. Simul., 13:6 (2021), 1097–1108  mathnet  crossref  crossref
    4. A. A. Zlotnik, T. A. Lomonosov, “O $L^2$-dissipativnosti linearizovannoi raznostnoi skhemy na raznesennykh setkakh s kvazigidrodinamicheskoi regulyarizatsiei dlya $\mathrm{1D}$ barotropnykh uravnenii dvizheniya gaza”, Preprinty IPM im. M. V. Keldysha, 2021, 072, 27 pp.  mathnet  crossref
    5. V. Balashov, “A regularized isothermal phase-field model of two-phase solid-fluid mixture and its spatial dissipative discretization”, Russ. J. Numer. Anal. Math. Model, 36:4 (2021), 197–217  crossref  mathscinet  zmath  isi  scopus
    6. A. Zlotnik, “On conditions for $L^2$-dissipativity of an explicit finite-difference scheme for linearized 2D and 3D barotropic gas dynamics system of equations with regularizations”, Symmetry-Basel, 13:11 (2021), 2184  crossref  mathscinet  isi
    7. V. Balashov, A. Zlotnik, “On a new spatial discretization for a regularized 3D compressible isothermal Navier-Stokes-Cahn-Hilliard system of equations with boundary conditions”, J. Sci. Comput., 86:3 (2021), 33  crossref  mathscinet  zmath  isi  scopus
    8. V. A. Balashov, “Dissipative spatial discretization of a phase field model of multiphase isothermal fluid flow”, Comput. Math. Appl., 90 (2021), 112–124  crossref  mathscinet  zmath  isi  scopus
    9. V. Balashov, A. Zlotnik, “An energy dissipative semi-discrete finite-difference method on staggered meshes for the 3D compressible isothermal Navier-Stokes-Cahn-Hilliard equations”, J. Comput. Dynam., 7:2 (2020), 291–312  crossref  mathscinet  zmath  isi
    10. A. A. Zlotnik, T. A. Lomonosov, “On $L^2$-dissipativity of a linearized explicit finite-difference scheme with quasi-gasdynamic regularization for the barotropic gas dynamics system of equations”, Dokl. Math.  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    11. 101, no. 3, 2020, 198–204  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. V. Balashov, A. Zlotnik, “An energy dissipative spatial discretization for the regularized compressible Navier-Stokes-Cahn-Hilliard system of equations”, Math. Model. Anal., 25:1 (2020), 110–129  crossref  mathscinet  zmath  isi
    13. Alexander Zlotnik, Springer Proceedings in Mathematics & Statistics, 333, Differential and Difference Equations with Applications, 2020, 53  crossref
    14. T. A. Lomonosov, “L2-Dissipativity Criteria for Linearized Explicit Finite Difference Schemes for Regularization of One-Dimensional Gas Dynamics Equations”, J Math Sci, 244:4 (2020), 649  crossref
    15. Andrey Epikhin, Matvey Kraposhin, Lecture Notes in Computer Science, 12143, Computational Science – ICCS 2020, 2020, 217  crossref
    16. A. Zlotnik, T. Lomonosov, “Verification of an entropy dissipative QGD-scheme for the 1D gas dynamics equations”, Math. Model. Anal., 24:2 (2019), 179–194  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:157
    References:23
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025