Abstract:
A discrete mathematical model of hydrobiology of coastal zone is constructed and analyzed. The model takes into account the transport and transformation of polluting biogenic elements in water basins. The propagation and transformation of biogenic elements is affected by such physical factors as three-dimensional motion of water taking into account the advective transport and microturbulent diffusion, spatially inhomogeneous distribution of temperature, salinity, and oxygen. Biogenic pollutants typically arrive into the water basin with river flow, which depends on the weather and climate of the geographic region, or with drainage of insufficiently purified domestic and industrial waste or other kinds of anthropogenic impact. Biogenic pollutants can also appear due to secondary pollution processes, such as stirring up and transport of bed silt, shore abrasion, etc. Stoichiometric relations between biogenic nutrients for phytoplankton algae that can be used to determine the limiting nutrient for each species are obtained. Observation models describing the consumption, accumulation of nutrients, and growth of phytoplankton are considered. A three-dimensional mathematical model of transformation of forms of phosphorus, nitrogen, and silicon in the plankton dynamics problem in coastal systems is constructed and analyzed. This model takes into account the convective and diffusive transport, absorption, and release of nutrients by phytoplankton as well as transformation cycles of phosphorus, nitrogen, and silicon forms. Numerical methods for solving the problem that are based on high-order weighted finite difference schemes and take into account the degree of fill of the computation domain control cells are developed. These methods are implemented on a multiprocessing system. They make it possible to improve the accuracy of the numerical solution and decrease the computation time by several fold. Based on the numerical implementation, dangerous phenomena in coastal systems related to the propagation of pollutants, including oil spill, eutrophication, and algae bloom, which causes suffocation phenomena in water basins, are reconstructed.
Citation:
V. A. Gushchin, A. V. Nikitina, A. A. Semenyakina, A. I. Sukhinov, A. E. Chistyakov, “A model of transport and transformation of biogenic elements in the coastal system and its numerical implementation”, Zh. Vychisl. Mat. Mat. Fiz., 58:8 (2018), 120–137; Comput. Math. Math. Phys., 58:8 (2018), 1316–1333
\Bibitem{GusNikSem18}
\by V.~A.~Gushchin, A.~V.~Nikitina, A.~A.~Semenyakina, A.~I.~Sukhinov, A.~E.~Chistyakov
\paper A model of transport and transformation of biogenic elements in the coastal system and its numerical implementation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 8
\pages 120--137
\mathnet{http://mi.mathnet.ru/zvmmf10768}
\crossref{https://doi.org/10.31857/S004446690002007-8}
\elib{https://elibrary.ru/item.asp?id=36283434}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 8
\pages 1316--1333
\crossref{https://doi.org/10.1134/S0965542518080092}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000447951800012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053896716}
Linking options:
https://www.mathnet.ru/eng/zvmmf10768
https://www.mathnet.ru/eng/zvmmf/v58/i8/p120
This publication is cited in the following 44 articles:
“Abstracts of talks given at the 7th International Conference on Stochastic Methods, II”, Theory Probab. Appl., 68:1 (2023), 150–169
Elena A. Protsenko, Alexander I. Sukhinov, Sofya V. Protsenko, Communications in Computer and Information Science, 1868, Parallel Computational Technologies, 2023, 259
Maria A. Malkova, Nikita D. Minchenkov, Olga G. Kantor, Evgeniy A. Kantor, I. Kovalev, “Modeling the content of chloroform in drinking water infiltration intake by periods of the annual cycle: low-water and permanent watercourse”, E3S Web of Conf., 390 (2023), 05002
A. I. Sukhinov, A. E. Chistyakov, A. M. Atayan, I. Yu. Kuznetsova, V. N. Litvinov, A. V. Nikitina, “Matematicheskaya model protsessa osazhdeniya na dno mnogokomponentnoi vzvesi i izmeneniya sostava donnykh materialov”, Izv. IMI UdGU, 60 (2022), 73–89
A. I. Sukhinov, A. M. Atayan, Y. V. Belova, V. N. Litvinov, A. V. Nikitina, A. E. Chistyakov, “Processing of Field Measurement Data from Expedition Research for Mathematical Modeling of Hydrodynamic Processes in the Sea of Azov”, J Appl Mech Tech Phy, 63:7 (2022), 1166
A. M. Atayan, A. V. Nikitina, A. I. Sukhinov, A. E. Chistyakov, “Mathematical modeling of hazardous natural phenomena in a shallow basin”, Comput. Math. Math. Phys., 61:2 (2022), 269–286
Giovanni La Forgia, Davide Cavaliere, Stefania Espa, Federico Falcini, Guglielmo Lacorata, “Numerical and experimental analysis of Lagrangian dispersion in two-dimensional chaotic flows”, Sci Rep, 12:1 (2022)
Alena Filina, Alla Nikitina, Yulia Belova, I. Malygina, “Development and numerical implementation of an algorithm for simulation the pollutant transport in water environment taking into account their destruction and deposition”, E3S Web Conf., 363 (2022), 02030
A. I. Sukhinov, A. E. Chistyakov, A. V. Nikitina, I. Yu. Kuznetsova, A. M. Atayan, E. A. Protsenko, V. N. Litvinov, “Supercomputer-based simulation of the hydrodynamics of river mouth areas”, Parallel Computational Technologies, Communications in Computer and Information Science, 1437, eds. L. Sokolinsky, M. Zymbler, Springer, 2021, 255–269
A. V. Nikitina, A. E. Chistyakov, A. M. Atayan, “NUMERICAL IMPLEMENTATION OF A PARALLEL ALGORITHM FOR SOLVING THE PROBLEM OF POLLUTANT TRANSPORT IN A RESERVOIR ON A HIGH-PERFORMANCE COMPUTER SYSTEM”, vkit, 2021, no. 202, 27
A. M. Atayan, A. E. Chistyakov, A. V. Nikitina, “PROCESSING OF DATA FROM FIELD OBSERVATIONS OF WATER FLOW VELOCITY PROFILES IN A SHALLOW RESERVOIR BASED ON THE KALMAN FILTER”, vkit, 2021, no. 200, 46
T V Lyashchenko, I A Lyapunova, A E Chistyakov, A V Nikitina, A A Filina, A L Leontiev, “Modelling the pollutants transport in the “air-water” system of a shallow water”, IOP Conf. Ser.: Mater. Sci. Eng., 1029:1 (2021), 012080
A I Sukhinov, A E Chistyakov, E A Protsenko, V V Sidoryakina, S V Protsenko, “Wave hydrodynamics discrete models construction and research”, IOP Conf. Ser.: Mater. Sci. Eng., 1029:1 (2021), 012086
A E Chistyakov, E A Protsenko, I Y Kuznetsova, A V Nikitina, “Suspended particle transport process modeling based on 2D and 3D models”, J. Phys.: Conf. Ser., 1902:1 (2021), 012137
A I Sukhinov, A E Chistyakov, I Y Kuznetsova, E A Protsenko, A M Atayan, “Modeling of soil dumping based on a modified Upwind Leapfrog difference scheme”, J. Phys.: Conf. Ser., 1745:1 (2021), 012120
A. Yu. Perevaryukha, “A Continuous Model of Three Scenarios of the Infection Process with Delayed Immune Response Factors”, BIOPHYSICS, 66:2 (2021), 327
A I Sukhinov, I Yu Kuznetsova, A E Chistyakov, V N Litvinov, “River mouth areas hydrodynamics mathematical modeling”, J. Phys.: Conf. Ser., 1902:1 (2021), 012132
A M Atayan, “Solving the diffusion-convection problem using MPI parallel computing technology”, J. Phys.: Conf. Ser., 1902:1 (2021), 012098
A E Chistyakov, A V Strazhko, A M Atayan, S V Protsenko, “Software development for calculating the polluted by suspension and other impurities zones volumes on the basis of graphics accelerator”, IOP Conf. Ser.: Mater. Sci. Eng., 1029:1 (2021), 012084
Y V Belova, A E Chistyakov, A L Leontyev, A A Filina, A V Nikitina, “Mathematical modeling of phytoplankton populations evolution in the Azov Sea”, J. Phys.: Conf. Ser., 1745:1 (2021), 012118