Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2018, Volume 58, Number 8, Pages 30–49
DOI: https://doi.org/10.31857/S004446690001999-9
(Mi zvmmf10760)
 

This article is cited in 10 scientific papers (total in 10 papers)

Construction of monotone difference schemes for systems of hyperbolic equations

Ya. A. Kholodovab, A. S. Kholodovca, I. V. Tsybulinc

a Institute of Computer Aided Design, Russian Academy of Sciences, Moscow, Russia
b Innopolis University, Innopolis, Russia
c Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Citations (10)
References:
Abstract: A distinctive feature of hyperbolic equations is the finite propagation velocity of perturbations in the region of integration (wave processes) and the existence of characteristic manifolds: characteristic lines and surfaces (bounding the domains of dependence and influence of solutions). Another characteristic feature of equations and systems of hyperbolic equations is the appearance of discontinuous solutions in the nonlinear case even in the case of smooth (including analytic) boundary conditions: the so-called gradient catastrophe. In this paper, on the basis of the characteristic criterion for monotonicity, a universal algorithm is proposed for constructing high-order schemes monotone for arbitrary form of the sought-for solution, based on their analysis in the space of indefinite coefficients. The constructed high-order difference schemes are tested on the basis of the characteristic monotonicity criterion for nonlinear one-dimensional systems of hyperbolic equations.
Key words: hyperbolic equations, difference schemes, monotonicity criteria for difference schemes, high-order difference schemes.
Funding agency Grant number
Russian Science Foundation 14-11-00877
Received: 26.03.2018
English version:
Computational Mathematics and Mathematical Physics, 2018, Volume 58, Issue 8, Pages 1226–1246
DOI: https://doi.org/10.1134/S0965542518080110
Bibliographic databases:
Document Type: Article
UDC: 519.635
Language: Russian
Citation: Ya. A. Kholodov, A. S. Kholodov, I. V. Tsybulin, “Construction of monotone difference schemes for systems of hyperbolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 58:8 (2018), 30–49; Comput. Math. Math. Phys., 58:8 (2018), 1226–1246
Citation in format AMSBIB
\Bibitem{KhoKhoTsy18}
\by Ya.~A.~Kholodov, A.~S.~Kholodov, I.~V.~Tsybulin
\paper Construction of monotone difference schemes for systems of hyperbolic equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 8
\pages 30--49
\mathnet{http://mi.mathnet.ru/zvmmf10760}
\crossref{https://doi.org/10.31857/S004446690001999-9}
\elib{https://elibrary.ru/item.asp?id=36283423}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 8
\pages 1226--1246
\crossref{https://doi.org/10.1134/S0965542518080110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000447951800004}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10760
  • https://www.mathnet.ru/eng/zvmmf/v58/i8/p30
  • This publication is cited in the following 10 articles:
    1. A. Yu. Trynin, “Ob odnom metode resheniya smeshannoi kraevoi zadachi dlya uravneniya parabolicheskogo tipa s pomoschyu operatorov ATλ,j”, Izv. vuzov. Matem., 2024, no. 2, 59–80  mathnet  crossref
    2. A. Yu. Trynin, “On One Method for Solving a Mixed Boundary Value Problem for a Parabolic Type Equation Using Operators ATλ,j”, Russ Math., 68:2 (2024), 52  crossref
    3. Victor V. Kuzenov, Sergei V. Ryzhkov, Aleksey Yu Varaksin, “Development of a method for solving elliptic differential equations based on a nonlinear compact-polynomial scheme”, Journal of Computational and Applied Mathematics, 451 (2024), 116098  crossref
    4. A. Yu. Trynin, “A method for solution of a mixed boundary value problem for a hyperbolic type equation using the operators ATλ,j”, Izv. Math., 87:6 (2023), 1227–1254  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. N. I Khokhlov, I. B Petrov, “Setochno-kharakteristicheskiy metod povyshennogo poryadka dlya sistem giperbolicheskikh uravneniy s kusochno-postoyannymi koeffitsientami”, Differentsialnye uravneniya, 59:7 (2023), 983  crossref
    6. A. Yu. Trynin, “On a method for solving a mixed boundary value problem for a parabolic equation using modified sinc-approximation operators”, Comput. Math. Math. Phys., 63:7 (2023), 1264–1284  mathnet  mathnet  crossref  crossref
    7. N. I. Khokhlov, I. B. Petrov, “High-Order Grid-Characteristic Method for Systems of Hyperbolic Equations with Piecewise Constant Coefficients”, Diff Equat, 59:7 (2023), 985  crossref
    8. V. Leviant, N. Marmalevsky, I. Kvasov, P. Stognii, I. Petrov, “Numerical modeling of seismic responses from fractured reservoirs in 4D monitoring - Part 1: Seismic responses from fractured reservoirs in carbonate and shale formations”, Geophysics, 86:6 (2021), M211–M232  crossref  isi
    9. Vladimir Leviant, Naum Marmalevsky, Igor Kvasov, Polina Stognii, Igor Petrov, “Numerical modeling of seismic responses from fractured reservoirs in 4D monitoring — Part 1: Seismic responses from fractured reservoirs in carbonate and shale formations”, GEOPHYSICS, 86:6 (2021), M211  crossref
    10. Ya. A. Kholodov, “Razrabotka setevykh vychislitelnykh modelei dlya issledovaniya nelineinykh volnovykh protsessov na grafakh”, Kompyuternye issledovaniya i modelirovanie, 11:5 (2019), 777–814  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:351
    References:87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025