Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 9, Pages 1548–1559
DOI: https://doi.org/10.7868/S0044466917090058
(Mi zvmmf10617)
 

This article is cited in 9 scientific papers (total in 9 papers)

On one model problem for the reaction-diffusion-advection equation

M. A. Davydova, S. A. Zakharova, N. T. Levashova

Moscow State University, Moscow, Russia
Full-text PDF (776 kB) Citations (9)
References:
Abstract: The asymptotic behavior of the solution with boundary layers in the time-independent mathematical model of reaction-diffusion-advection arising when describing the distribution of greenhouse gases in the surface atmospheric layer is studied. On the basis of the asymptotic method of differential inequalities, the existence of a boundary-layer solution and its asymptotic Lyapunov stability as a steady-state solution of the corresponding parabolic problem is proven. One of the results of this work is the determination of the local domain of the attraction of a boundary-layer solution.
Key words: reaction–diffusion–advection equations, singularly perturbed problems, asymptotic methods.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00437_a
Russian Science Foundation 14-14-00956
Received: 02.06.2016
Revised: 12.12.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 9, Pages 1528–1539
DOI: https://doi.org/10.1134/S0965542517090056
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: M. A. Davydova, S. A. Zakharova, N. T. Levashova, “On one model problem for the reaction-diffusion-advection equation”, Zh. Vychisl. Mat. Mat. Fiz., 57:9 (2017), 1548–1559; Comput. Math. Math. Phys., 57:9 (2017), 1528–1539
Citation in format AMSBIB
\Bibitem{DavZakLev17}
\by M.~A.~Davydova, S.~A.~Zakharova, N.~T.~Levashova
\paper On one model problem for the reaction-diffusion-advection equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 9
\pages 1548--1559
\mathnet{http://mi.mathnet.ru/zvmmf10617}
\crossref{https://doi.org/10.7868/S0044466917090058}
\elib{https://elibrary.ru/item.asp?id=29961022}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 9
\pages 1528--1539
\crossref{https://doi.org/10.1134/S0965542517090056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412068500011}
\elib{https://elibrary.ru/item.asp?id=31065824}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030155365}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10617
  • https://www.mathnet.ru/eng/zvmmf/v57/i9/p1548
  • This publication is cited in the following 9 articles:
    1. A. A. Bykov, “Evolution of a Two-Dimensional Moving Contrast Structure in an Inhomogeneous Medium with Advection”, Moscow Univ. Phys., 79:2 (2024), 140  crossref
    2. K. A. Kotsubinsky, N. T. Levashova, A. A. Melnikova, “Stabilization of a traveling front solution in a reaction-diffusion equation”, Mosc. Univ. Phys. Bull., 76:6 (2021), 413–423  crossref  adsnasa  isi
    3. N. T. Levashova, B. V. Tischenko, “Existence and stability of the solution to a system of two nonlinear diffusion equations in a medium with discontinuous characteristics”, Comput. Math. Math. Phys., 61:11 (2021), 1811–1833  mathnet  mathnet  crossref  crossref  isi  scopus
    4. S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Diffusion chaos and its invariant numerical characteristics”, Theoret. and Math. Phys., 203:1 (2020), 443–456  mathnet  crossref  crossref  adsnasa  isi  elib
    5. M. A. Davydova, N. N. Nefedov, S. A. Zakharova, Lecture Notes in Computer Science, 11386, Finite Difference Methods. Theory and Applications, 2019, 216  crossref
    6. A. O. Orlov, N. T. Levashova, N. N. Nefedov, “Solution of contrast structure type for a parabolic reaction-diffusion problem in a medium with discontinuous characteristics”, Differ. Equ., 54:5 (2018), 669–686  crossref  mathscinet  zmath  isi  scopus
    7. N. T. Levashova, N. N. Nefedov, A. V. Yagremtsev, “Existence of a solution in the form of a moving front of a reaction-diffusion-advection problem in the case of balanced advection”, Izv. Math., 82:5 (2018), 984–1005  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. S. V. Bytsyura, N. T. Levashova, “Verkhnee i nizhnee resheniya dlya sistemy uravnenii tipa FitsKhyu–Nagumo”, Model. i analiz inform. sistem, 25:1 (2018), 33–53  mathnet  crossref  elib
    9. Levashova N.T., Nefedov N.N., Nikolaeva O.A., Orlov A.O., Panin A.A., “The Solution With Internal Transition Layer of the Reaction-Diffusion Equation in Case of Discontinuous Reactive and Diffusive Terms”, Math. Meth. Appl. Sci., 41:18, SI (2018), 9203–9217  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :47
    References:52
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025