Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 5, Pages 783–800
DOI: https://doi.org/10.7868/S0044466917050015
(Mi zvmmf10570)
 

This article is cited in 12 scientific papers (total in 12 papers)

Dynamics and variational inequalities

A. S. Antipina, V. Jaćimovićb, M. Jaćimovićb

a Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, Moscow, Russia
b Faculty of Mathematics and Natural Sciences, University of Montenegro, Podgorica, Montenegro
References:
Abstract: A terminal control problem with linear dynamics and a boundary condition given implicitly in the form of a solution of a variational inequality is considered. In the general control theory, this problem belongs to the class of stabilization problems. A saddle-point method of the extragradient type is proposed for its solution. The method is proved to converge with respect to all components of the solution, i.e., with respect to controls, phase and adjoint trajectories, and the finite-dimensional variables of the terminal problem.
Key words: linear dynamics, control, boundary value problem, variational inequality, saddle-point method, convergence.
Received: 01.05.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 5, Pages 784–801
DOI: https://doi.org/10.1134/S0965542517050013
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: A. S. Antipin, V. Jaćimović, M. Jaćimović, “Dynamics and variational inequalities”, Zh. Vychisl. Mat. Mat. Fiz., 57:5 (2017), 783–800; Comput. Math. Math. Phys., 57:5 (2017), 784–801
Citation in format AMSBIB
\Bibitem{AntJacJac17}
\by A.~S.~Antipin, V.~Ja{\'c}imovi{\'c}, M.~Ja{\'c}imovi{\'c}
\paper Dynamics and variational inequalities
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 5
\pages 783--800
\mathnet{http://mi.mathnet.ru/zvmmf10570}
\crossref{https://doi.org/10.7868/S0044466917050015}
\elib{https://elibrary.ru/item.asp?id=29331732}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 5
\pages 784--801
\crossref{https://doi.org/10.1134/S0965542517050013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403459000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020684488}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10570
  • https://www.mathnet.ru/eng/zvmmf/v57/i5/p783
  • This publication is cited in the following 12 articles:
    1. Kubra Sanaullah, Saleem Ullah, Najla M. Aloraini, “A Self Adaptive Three-Step Numerical Scheme for Variational Inequalities”, Axioms, 13:1 (2024), 57  crossref
    2. A. S. Antipin, E. V. Khoroshilova, “Synthesis of a Regulator for a Linear-Quadratic Optimal Control Problem”, Comput. Math. and Math. Phys., 64:9 (2024), 1921  crossref
    3. Anatoly Antipin, Elena Khoroshilova, Lecture Notes in Computer Science, 13781, Optimization and Applications, 2022, 108  crossref
    4. Kubra Sanaullah, Saleem Ullah, Muhammad Shoaib Arif, Kamaleldin Abodayeh, Rabia Fayyaz, Nawab Hussain, “Self-Adaptive Predictor-Corrector Approach for General Variational Inequalities Using a Fixed-Point Formulation”, Journal of Function Spaces, 2022 (2022), 1  crossref
    5. Anatoly Antipin, Elena Khoroshilova, Lecture Notes in Computer Science, 13078, Optimization and Applications, 2021, 151  crossref
    6. F. S. Stonyakin, E. A. Vorontsova, M. S. Alkousa, “New version of mirror prox for variational inequalities with adaptation to inexactness”, Optimization and Applications, OPTIMA 2019, Communications in Computer and Information Science, 1145, eds. M. Jacimovic, M. Khachay, V. Malkova, M. Posypkin, Springer, 2020, 427–442  crossref  mathscinet  zmath  isi
    7. A. S. Antipin, E. V. Khoroshilova, “Dynamics, phase constraints, and linear programming”, Comput. Math. Math. Phys., 60:2 (2020), 184–202  mathnet  crossref  crossref  isi  elib
    8. F. S. Stonyakin, “An adaptive analog of Nesterov's method for variational inequalities with a strongly monotone operator”, Num. Anal. Appl., 12:2 (2019), 166–175  mathnet  crossref  crossref  isi  elib
    9. Y. Yao, M. Postolache, J.-Ch. Yao, “Iterative algorithms for generalized variational inequalities”, Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys., 81:2 (2019), 3–16  mathscinet  isi
    10. F. S. Stonyakin, “On the Adaptive Proximal Method for a Class of Variational Inequalities and Related Problems”, Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S139–S150  mathnet  crossref  crossref  isi  elib
    11. A. V. Gasnikov, P. E. Dvurechenskii, F. S. Stonyakin, A. A. Titov, “An adaptive proximal method for variational inequalities”, Comput. Math. Math. Phys., 59:5 (2019), 836–841  mathnet  crossref  crossref  isi  elib
    12. A. S. Antipin, E. V. Khoroshilova, “Feedback synthesis for a terminal control problem”, Comput. Math. Math. Phys., 58:12 (2018), 1903–1918  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:382
    Full-text PDF :61
    References:74
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025