Processing math: 100%
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 4, Pages 710–729
DOI: https://doi.org/10.7868/S004446691702017X
(Mi zvmmf10565)
 

This article is cited in 25 scientific papers (total in 25 papers)

Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations

A. A. Zlotnik

National Research University Higher School of Economics, Moscow, Russia
References:
Abstract: The multidimensional quasi-gasdynamic system written in the form of mass, momentum, and total energy balance equations for a perfect polytropic gas with allowance for a body force and a heat source is considered. A new conservative symmetric spatial discretization of these equations on a nonuniform rectangular grid is constructed (with the basic unknown functions—density, velocity, and temperature—defined on a common grid and with fluxes and viscous stresses defined on staggered grids). Primary attention is given to the analysis of entropy behavior: the discretization is specially constructed so that the total entropy does not decrease. This is achieved via a substantial revision of the standard discretization and applying numerous original features. A simplification of the constructed discretization serves as a conservative discretization with nondecreasing total entropy for the simpler quasi-hydrodynamic system of equations. In the absence of regularizing terms, the results also hold for the Navier–Stokes equations of a viscous compressible heat-conducting gas.
Key words: Navier-Stokes equations for viscous compressible heat-conducting gases, quasi-gasdynamic system of equations, spatial discretization, conservativeness, law of nondecreasing entropy.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00048_а
Received: 09.03.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 4, Pages 706–725
DOI: https://doi.org/10.1134/S0965542517020166
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations”, Zh. Vychisl. Mat. Mat. Fiz., 57:4 (2017), 710–729; Comput. Math. Math. Phys., 57:4 (2017), 706–725
Citation in format AMSBIB
\Bibitem{Zlo17}
\by A.~A.~Zlotnik
\paper Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 4
\pages 710--729
\mathnet{http://mi.mathnet.ru/zvmmf10565}
\crossref{https://doi.org/10.7868/S004446691702017X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3651124}
\elib{https://elibrary.ru/item.asp?id=29331727}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 4
\pages 706--725
\crossref{https://doi.org/10.1134/S0965542517020166}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401560700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019607586}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10565
  • https://www.mathnet.ru/eng/zvmmf/v57/i4/p710
  • This publication is cited in the following 25 articles:
    1. Vladislav Balashov, Evgeny Savenkov, Aleksey Khlyupin, Kirill M. Gerke, “Two-phase regularized phase-field density gradient Navier–Stokes based flow model: Tuning for microfluidic and digital core applications”, Journal of Computational Physics, 2024, 113554  crossref
    2. Y. A. Kriksin, V. F. Tishkin, “Entropic regularization of the discontinuous Galerkin method in conservative variables for three-dimensional Euler equations”, Math. Models Comput. Simul., 16:6 (2024), 843–852  mathnet  crossref  crossref
    3. Alexander Zlotnik, “Conditions for L2-dissipativity of an explicit symmetric finite-difference scheme for linearized 2d and 3d gas dynamics equations with a regularization”, DCDS-B, 28:3 (2023), 1571  crossref
    4. Alexander Zlotnik, Timofey Lomonosov, “On Regularized Systems of Equations for Gas Mixture Dynamics with New Regularizing Velocities and Diffusion Fluxes”, Entropy, 25:1 (2023), 158  crossref
    5. I. M. Kulikov, “Using piecewise parabolic reconstruction of physical variables in the Rusanov solver. I. The special relativistic hydrodynamics equations”, J. Appl. Industr. Math., 17:4 (2023), 737–749  mathnet  crossref  crossref
    6. Yu. A. Kriksin, V. F. Tishkin, “Entropic regularization of the discontinuous Galerkin method for two-dimensional Euler equations in triangulated domains”, Math. Models Comput. Simul., 15:5 (2023), 781–791  mathnet  crossref  crossref  mathscinet
    7. I. M. Kulikov, “Using a Combination of Godunov and Rusanov Solvers Based on the Piecewise Parabolic Reconstruction of Primitive Variables for Numerical Simulation of Supernovae Ia Type Explosion”, Lobachevskii J Math, 43:6 (2022), 1545  crossref
    8. Alexander Zlotnik, Anna Fedchenko, Timofey Lomonosov, “Entropy Correct Spatial Discretizations for 1D Regularized Systems of Equations for Gas Mixture Dynamics”, Symmetry, 14:10 (2022), 2171  crossref
    9. M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Entropy stable discontinuous Galerkin method for two-dimensional Euler equations”, Math. Models Comput. Simul., 13:5 (2021), 897–906  mathnet  crossref  crossref
    10. M. D. Bragin, Yu. A. Kriksin, V. F. Tishkin, “Entropic regularization of the discontinuous Galerkin method in conservative variables for two-dimensional Euler equations”, Math. Models Comput. Simul., 14:4 (2022), 578–589  mathnet  crossref  crossref
    11. V. Balashov, A. Zlotnik, “On a new spatial discretization for a regularized 3D compressible isothermal Navier-Stokes-Cahn-Hilliard system of equations with boundary conditions”, J. Sci. Comput., 86:3 (2021), 33  crossref  mathscinet  zmath  isi  scopus
    12. V. A. Balashov, “Dissipative spatial discretization of a phase field model of multiphase isothermal fluid flow”, Comput. Math. Appl., 90 (2021), 112–124  crossref  mathscinet  zmath  isi
    13. N. Cao, X. Miao, J. Zhang, “Spatial intelligent decision system based on multidimensional network theory”, J. Intell. Fuzzy Syst., 40:4 (2021), 6137–6149  crossref  isi
    14. M. D. Bragin, Yu. A. Kriksin, V. F. Tishkin, “Discontinuous Galerkin method with entropic slope limiter for Euler equations”, Math. Models Comput. Simul., 12:5 (2020), 824–833  mathnet  crossref  crossref
    15. Y. A. Kriksin, V. F. Tishkin, “Entropy stable discontinuous Galerkin method for Euler equations using non-conservative variables”, Math. Models Comput. Simul., 13:3 (2021), 416–425  mathnet  crossref  crossref
    16. V. Balashov, A. Zlotnik, “An energy dissipative spatial discretization for the regularized compressible Navier-Stokes-Cahn-Hilliard system of equations”, Math. Model. Anal., 25:1 (2020), 110–129  crossref  mathscinet  zmath  isi
    17. M. D. Bragin, Yu. A. Kriksin, V. F. Tishkin, “Verifikatsiya odnogo metoda entropiinoi regulyarizatsii razryvnykh skhem Galerkina dlya uravnenii giperbolicheskogo tipa”, Preprinty IPM im. M. V. Keldysha, 2019, 018, 25 pp.  mathnet  crossref  elib
    18. V. Balashov, E. Savenkov, A. Zlotnik, “Numerical method for 3D two-component isothermal compressible flows with application to digital rock physics”, Russ. J. Numer. Anal. Math. Model, 34:1 (2019), 1–13  crossref  mathscinet  zmath  isi  scopus
    19. A. Zlotnik, T. Lomonosov, “Verification of an entropy dissipative QGD-scheme for the 1D gas dynamics equations”, Math. Model. Anal., 24:2 (2019), 179–194  crossref  mathscinet  zmath  isi  scopus
    20. M. D. Bragin, Yu. A. Kriksin, V. F. Tishkin, “Obespechenie entropiinoi ustoichivosti razryvnogo metoda Galerkina v gazodinamicheskikh zadachakh”, Preprinty IPM im. M. V. Keldysha, 2019, 051, 22 pp.  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:383
    Full-text PDF :69
    References:62
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025