Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 6, Pages 985–1002
DOI: https://doi.org/10.7868/S0044466917060138
(Mi zvmmf10549)
 

This article is cited in 42 scientific papers (total in 42 papers)

Well-posedness analysis and numerical implementation of a linearized two-dimensional bottom sediment transport problem

V. V. Sidoryakinaa, A. I. Sukhinovb

a Chekhov Taganrog Institute, Branch of Rostov State University of Economics, Taganrog, Russia
b Don State Technical University, Rostov-on-Don, Russia
References:
Abstract: A two-dimensional linearized model of coastal sediment transport due to the action of waves is studied. Up till now, one-dimensional sediment transport models have been used. The model under study makes allowance for complicated bottom relief, the porosity of the bottom sediment, the size and density of sediment particles, gravity, wave-generated shear stress, and other factors. For the corresponding initial-boundary value problem the uniqueness of a solution is proved, and an a priori estimate for the solution norm is obtained depending on integral estimates of the right-hand side, boundary conditions, and the norm of the initial condition. A conservative difference scheme with weights is constructed that approximates the continuous initial-boundary value problem. Sufficient conditions for the stability of the scheme, which impose constraints on its time step, are given. Numerical experiments for test problems of bottom sediment transport and bottom relief transformation are performed. The numerical results agree with actual physical experiments.
Key words: sediment transport model, coastal zone, bottom surface, solution uniqueness, estimate for the norm of the solution to an initial-boundary value problem.
Funding agency Grant number
Russian Science Foundation 17-11-01286
Received: 29.03.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 6, Pages 978–994
DOI: https://doi.org/10.1134/S0965542517060124
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: V. V. Sidoryakina, A. I. Sukhinov, “Well-posedness analysis and numerical implementation of a linearized two-dimensional bottom sediment transport problem”, Zh. Vychisl. Mat. Mat. Fiz., 57:6 (2017), 985–1002; Comput. Math. Math. Phys., 57:6 (2017), 978–994
Citation in format AMSBIB
\Bibitem{SidSuk17}
\by V.~V.~Sidoryakina, A.~I.~Sukhinov
\paper Well-posedness analysis and numerical implementation of a linearized two-dimensional bottom sediment transport problem
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 6
\pages 985--1002
\mathnet{http://mi.mathnet.ru/zvmmf10549}
\crossref{https://doi.org/10.7868/S0044466917060138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3667397}
\elib{https://elibrary.ru/item.asp?id=29331750}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 6
\pages 978--994
\crossref{https://doi.org/10.1134/S0965542517060124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404683100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021625746}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10549
  • https://www.mathnet.ru/eng/zvmmf/v57/i6/p985
  • This publication is cited in the following 42 articles:
    1. V. V. Sidoryakina, “Sufficient Conditions for the Convergence of Solutions of the Linearized Problem to the Solution of the Original Nonlinear Problem of Multifractional Sediment Transport in Shallow Water”, CMIT, 9:1 (2025), 20  crossref
    2. V. V. Sidoryakina, D. A. Solomakha, “Parallel Algorithms for Numerical Solution of Spatially Three-Dimensional Diffusion-Convection Equations in Coastal Systems Based on Splitting Schemes”, CMIT, 8:1 (2024), 29  crossref
    3. A. I. Sukhinov, A. E. Chistyakov, V. V. Sidoryakina, I. Yu. Kuznetsova, A. M. Atayan, “Ispolzovanie parallelnykh vychislenii dlya otsenki protsessa perenosa zagryaznyayuschikh veschestv v melkovodnykh vodoemakh”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 24:2 (2024), 298–315  mathnet  crossref
    4. Alexander Sukhinov, Valentina Sidoryakina, Denis Solomakha, Lecture Notes in Networks and Systems, 1044, Current Problems of Applied Mathematics and Computer Systems, 2024, 11  crossref
    5. V. V. Sidoryakina, A. I. Sukhinov, “Construction of solutions and study of their closeness in $L_2$ for two boundary value problems for a model of multicomponent suspension transport in coastal systems”, Comput. Math. Math. Phys., 63:10 (2023), 1918–1928  mathnet  mathnet  crossref  crossref
    6. Valentina V. Sidoryakina, Environmental Science and Engineering, Sustainable Development of Water and Environment, 2023, 317  crossref
    7. Alexander Sukhinov, Valentina Sidoryakina, V. Pukhkal, S. Uvarova, “Two-dimensional-one-dimensional splitting scheme for the numerical solution of problems of transport of multicomponent suspensions using θ coordinates”, E3S Web of Conf., 458 (2023), 03019  crossref
    8. A. I. Sukhinov, A. E. Chistyakov, V. V. Sidoryakina, I. Yu. Kuznetsova, A. M. Atayan, M. V. Porksheyan, Communications in Computer and Information Science, 1868, Parallel Computational Technologies, 2023, 244  crossref
    9. V. V. Sidoryakina, “Existence and Uniqueness of the Initial-Boundary Value Problem Solution of Multicomponent Sediments Transport in Coastal Marine Systems”, CMIT, 7:2 (2023), 73  crossref
    10. V. V. Sidoryakina, D. A. Solomakha, “Symmetrized Versions of the Seidel and Successive OverRelaxation Methods for Solving Two-Dimensional Difference Problems of Elliptic Type”, CMIT, 7:3 (2023), 12  crossref
    11. A.I. Sukhinov, V.V. Kholodkov, E.A. Protsenko, S.V. Protsenko, I. Tanaino, T. Dzholdosheva, “Dynamically changing bottom relief modeling based on spatially inhomogeneous 3D mathematical model of wave hydrodynamics”, E3S Web of Conf., 402 (2023), 03030  crossref
    12. Alexander Sukhinov, Elena Protsenko, Valentina Sidoryakina, Sofya Protsenko, PROCEEDING OF THE 7TH INTERNATIONAL CONFERENCE OF SCIENCE, TECHNOLOGY, AND INTERDISCIPLINARY RESEARCH (IC-STAR 2021), 2601, PROCEEDING OF THE 7TH INTERNATIONAL CONFERENCE OF SCIENCE, TECHNOLOGY, AND INTERDISCIPLINARY RESEARCH (IC-STAR 2021), 2023, 050009  crossref
    13. Vladimir Litvinov, Nelli Rudenko, Natalya Gracheva, Alexander Chistyakov, I. Malygina, “A software package for solving grid equations in areas with geometry “stretched” along one of the spatial directions”, E3S Web Conf., 363 (2022), 02021  crossref
    14. A. E. Chistyakov, V. V. Sidoryakina, S. V. Protsenko, “Development of algorithms for constructing two-dimensional optimal boundary-adaptive grids and their software implementation”, Vestnik Donskogo gosudarstvennogo tehničeskogo universiteta, 21:3 (2021), 222  crossref
    15. A I Sukhinov, E A Protsenko, V V Sidoryakina, S V Protsenko, “Numerical simulation of bottom topography transformation taking into account the coastal shore protection structures”, J. Phys.: Conf. Ser., 1745:1 (2021), 012102  crossref
    16. V V Sidoryakina, “3D Cartesian vertically boundary-adaptive grids construction for coastal hydrophysics problems”, IOP Conf. Ser.: Mater. Sci. Eng., 1029 (2021), 012116  crossref
    17. A. I. Sukhinov, A. A. Sukhinov, V. V. Sidoryakina, “Uniqueness of solving the problem of transport and sedimentation of multicomponent suspensions in coastal systems”, Applied Mathematics, Computational Science and Mechanics: Current Problems, Journal of Physics Conference Series, 1479, IOP Publishing Ltd, 2020, 012081  crossref  isi
    18. Alexander I. Sukhinov, Alexander E. Chistyakov, Elena A. Protsenko, Valentina V. Sidoryakina, Sofya V. Protsenko, Communications in Computer and Information Science, 1263, Parallel Computational Technologies, 2020, 279  crossref
    19. A Sukhinov, V Sidoryakina, V. Breskich, A. Zheltenkov, Y. Dreizis, “Additive two-dimensional splitting schemes for solving 3D suspension transport problems on optimal boundary-adaptive grids with uniform spacing's in the vertical direction”, E3S Web Conf., 224 (2020), 02017  crossref
    20. “Abstracts of talks given at the 3rd International Conference on Stochastic Methods”, Theory Probab. Appl., 64:1 (2019), 124–169  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:622
    Full-text PDF :111
    References:97
    First page:31
     
      Contact us:
    math-net2025_09@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025