Abstract:
For semilinear elliptic equations −Δu=λ|u|p−2u−|u|q−2u, boundary value problems in bounded and unbounded domains are considered. In the plane of exponents p×q, the so-called curves of critical exponents are defined that divide this plane into domains with qualitatively different properties of the boundary value problems and the corresponding parabolic equations. New solvability conditions for boundary value problems, conditions for the stability and instability of stationary solutions, and conditions for the existence of global solutions to parabolic equations are found.
Citation:
Ya. Sh. Il'yasov, “On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass”, Zh. Vychisl. Mat. Mat. Fiz., 57:3 (2017), 491–509; Comput. Math. Math. Phys., 57:3 (2017), 497–514
\Bibitem{Ily17}
\by Ya.~Sh.~Il'yasov
\paper On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 3
\pages 491--509
\mathnet{http://mi.mathnet.ru/zvmmf10539}
\crossref{https://doi.org/10.7868/S0044466917030061}
\elib{https://elibrary.ru/item.asp?id=28918691}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 3
\pages 497--514
\crossref{https://doi.org/10.1134/S096554251703006X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000399737400010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85017578612}
Linking options:
https://www.mathnet.ru/eng/zvmmf10539
https://www.mathnet.ru/eng/zvmmf/v57/i3/p491
This publication is cited in the following 2 articles:
Jacques Giacomoni, Yavdat Il'yasov, Deepak Kumar, “On periodic and compactly supported least energy solutions to semilinear elliptic equations with non-Lipschitz nonlinearity”, ASY, 137:1-2 (2024), 1
J. I. Diaz, J. Hernandez, Y. Sh. Ilyasov, “On the exact multiplicity of stable ground states of non-Lipschitz semilinear elliptic equations for some classes of starshaped sets”, Adv. Nonlinear Anal., 9:1 (2020), 1046–1065