Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2017, Volume 57, Number 2, Pages 339–349
DOI: https://doi.org/10.7868/S0044466917020107
(Mi zvmmf10525)
 

This article is cited in 13 scientific papers (total in 13 papers)

A model of the joint motion of agents with a three-level hierarchy based on a cellular automaton

A. V. Kuznetsovab

a Concern Sozvezdie, Voronezh, Russia
b Voronezh State University, Voronezh, Russia
References:
Abstract: The collective interaction of agents for jointly overcoming (negotiating) obstacles is simulated. The simulation uses a cellular automaton. The automaton's cells are filled with agents and obstacles of various complexity. The agents' task is to negotiate the obstacles while moving to a prescribed target point. Each agent is assigned to one of three levels, which specifies a hierarchy of subordination between the agents. The complexity of an obstacle is determined by the amount of time needed to overcome it. The proposed model is based on the probabilities of going from one cell to another.
Key words: model of motion, system of hierarchically organized agents, cellular automaton.
Received: 06.07.2015
Revised: 17.07.2016
English version:
Computational Mathematics and Mathematical Physics, 2017, Volume 57, Issue 2, Pages 340–349
DOI: https://doi.org/10.1134/S0965542517020099
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. V. Kuznetsov, “A model of the joint motion of agents with a three-level hierarchy based on a cellular automaton”, Zh. Vychisl. Mat. Mat. Fiz., 57:2 (2017), 339–349; Comput. Math. Math. Phys., 57:2 (2017), 340–349
Citation in format AMSBIB
\Bibitem{Kuz17}
\by A.~V.~Kuznetsov
\paper A model of the joint motion of agents with a three-level hierarchy based on a cellular automaton
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 2
\pages 339--349
\mathnet{http://mi.mathnet.ru/zvmmf10525}
\crossref{https://doi.org/10.7868/S0044466917020107}
\elib{https://elibrary.ru/item.asp?id=28918677}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 2
\pages 340--349
\crossref{https://doi.org/10.1134/S0965542517020099}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000397983100010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019266332}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10525
  • https://www.mathnet.ru/eng/zvmmf/v57/i2/p339
  • This publication is cited in the following 13 articles:
    1. Alexander V. Kuznetsov, Andrew Schumann, Małgorzata Rataj, “Continuous optimisation problem and game theory for multi-agent pathfinding”, Int J Game Theory, 53:1 (2024), 1  crossref
    2. A. Kuznetsov, “Game-theoretic model of agents' motion over a terrain with obstacles”, 2020 VI International Conference on Information Technology and Nanotechnology, IEEE ITNT-2020, ed. D. Kudryashov, IEEE, 2020  crossref  isi
    3. I. V. Matyushkin, M. A. Zapletina, “Obzor po tematike kletochnykh avtomatov na baze sovremennykh otechestvennykh publikatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 9–57  mathnet  crossref
    4. A. Kuznetsov, E. Shishkina, S. Sitnik, “Probabilistic properties of near-optimal trajectories of an agent moving over a lattice”, J. Optim. Theory Appl., 182:2 (2019), 768–784  crossref  mathscinet  zmath  isi
    5. A. V. Kuznetsov, “Model of the motion of agents with memory based on the cellular automaton”, Int. J. Parallel Emerg. Distrib. Syst., 33:3, SI (2018), 290–306  crossref  isi
    6. H. Lu, G. Liu, T. Okuda, Ch. Zhang, “Marginal abatement cost curves for REDD+ in Kalimantan, Indonesia and the potential role of cost-saving plantations”, Environ. Res. Lett., 13:7 (2018), 075006  crossref  adsnasa  isi
    7. A. V. Kuznetsov, “Modelirovanie sistemy svyazi agentov, dvizhuschikhsya po peresechennoi mestnosti”, Chelyab. fiz.-matem. zhurn., 3:2 (2018), 237–248  mathnet  crossref
    8. A. V. Kuznetsov, “On the motion of agents across terrain with obstacles”, Comput. Math. Math. Phys., 58:1 (2018), 137–151  mathnet  crossref  crossref  isi  elib
    9. A. V. Kuznetsov, “Dinamicheskaya model sistemy svyazi gruppy agentov”, UBS, 75 (2018), 6–29  mathnet  crossref
    10. A. V. Kuznetsov, N. I. Selvesiuk, G. A. Platoshin, E. V. Semenova, “Application of cellular automatons and ANT algorithms in avionics”, International Conference Applied Mathematics, Computational Science and Mechanics: Current Problems, Journal of Physics Conference Series, 973, IOP Publishing Ltd, 2018, 012062  crossref  isi  scopus
    11. A. V. Kuznetsov, “Raspredelenie ogranichennykh resursov v sisteme s ustoichivoi ierarkhiei (na primere perspektivnoi sistemy voennoi svyazi)”, UBS, 66 (2017), 68–93  mathnet  elib
    12. A. V. Kuznetsov, “Organization of an agents' formation through a cellular automaton”, Autom. Remote Control, 81:1 (2020), 152–170  mathnet  crossref  elib
    13. Kuznetsov A.V., “A Simplified Combat Model Based on a Cellular Automaton”, J. Comput. Syst. Sci. Int., 56:3 (2017), 397–409  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:316
    Full-text PDF :88
    References:52
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025