Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2016, Volume 56, Number 6, Pages 1104–1114
DOI: https://doi.org/10.7868/S0044466916060089
(Mi zvmmf10409)
 

This article is cited in 32 scientific papers (total in 32 papers)

Simulation of elastic wave propagation in geological media: Intercomparison of three numerical methods

V. A. Biryukov, V. A. Miryaha, I. B. Petrov, N. I. Khokhlov

Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700, Russia
References:
Abstract: For wave propagation in heterogeneous media, we compare numerical results produced by grid-characteristic methods on structured rectangular and unstructured triangular meshes and by a discontinuous Galerkin method on unstructured triangular meshes as applied to the linear system of elasticity equations in the context of direct seismic exploration with an anticlinal trap model. It is shown that the resulting synthetic seismograms are in reasonable quantitative agreement. The grid-characteristic method on structured meshes requires more nodes for approximating curved boundaries, but it has a higher computation speed, which makes it preferable for the given class of problems.
Key words: grid-characteristic method, discontinuous Galerkin method, seismic exploration problems.
Funding agency Grant number
Russian Science Foundation 14-11-00263
Received: 09.11.2015
English version:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 6, Pages 1086–1095
DOI: https://doi.org/10.1134/S0965542516060087
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: V. A. Biryukov, V. A. Miryaha, I. B. Petrov, N. I. Khokhlov, “Simulation of elastic wave propagation in geological media: Intercomparison of three numerical methods”, Zh. Vychisl. Mat. Mat. Fiz., 56:6 (2016), 1104–1114; Comput. Math. Math. Phys., 56:6 (2016), 1086–1095
Citation in format AMSBIB
\Bibitem{BirMirPet16}
\by V.~A.~Biryukov, V.~A.~Miryaha, I.~B.~Petrov, N.~I.~Khokhlov
\paper Simulation of elastic wave propagation in geological media: Intercomparison of three numerical methods
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 6
\pages 1104--1114
\mathnet{http://mi.mathnet.ru/zvmmf10409}
\crossref{https://doi.org/10.7868/S0044466916060089}
\elib{https://elibrary.ru/item.asp?id=26068786}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 6
\pages 1086--1095
\crossref{https://doi.org/10.1134/S0965542516060087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000378740000015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84976443889}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10409
  • https://www.mathnet.ru/eng/zvmmf/v56/i6/p1104
  • This publication is cited in the following 32 articles:
    1. Evgeniy Pyriaev, Katerina Beklemysheva, Communications in Computer and Information Science, 2363, Mathematical Modeling and Supercomputer Technologies, 2025, 251  crossref
    2. Nikita O. Shigaev, Katerina A. Beklemysheva, Communications in Computer and Information Science, 1914, Mathematical Modeling and Supercomputer Technologies, 2024, 253  crossref
    3. V. S. Surov, “K raschetu techenii gazozhidkostnykh smesei modifitsirovannym uzlovym metodom kharakteristik”, Sib. zhurn. vychisl. matem., 26:4 (2023), 431–450  mathnet  crossref
    4. K. A. Beklemysheva, A. V. Vasyukov, I. B. Petrov, “Numerical Modeling of Ultrasound Artifacts with Grid-Characteristic Method”, Lobachevskii J Math, 44:1 (2023), 259  crossref
    5. V. S. Surov, “Calculation of Flows of Gas-Liquid Mixtures by a Modified Nodal Method of Characteristics”, Numer. Analys. Appl., 16:4 (2023), 359  crossref
    6. K. R. Raghunatha, Y. Vinod, “Effects of heat transfer on MHD suction–injection model of viscous fluid flow through differential transformation and Bernoulli wavelet techniques”, Heat Trans, 52:7 (2023), 4914  crossref
    7. Vasily Golubev, Alexey Shevchenko, Nikolay Khokhlov, Igor Petrov, Mikhail Malovichko, “Compact Grid-Characteristic Scheme for the Acoustic System with the Piece-Wise Constant Coefficients”, Int. J. Appl. Mechanics, 14:02 (2022)  crossref
    8. Yao Pang, Lijun Yan, Yuan Liu, Lin Tang, Rui Zhu, Guofeng Liu, “Seismic Wave Finite-Difference Forward Modeling for Orogenic Gold Deposits”, Minerals, 12:11 (2022), 1465  crossref
    9. V. Leviant, N. Marmalevsky, I. Kvasov, P. Stognii, I. Petrov, “Numerical modeling of seismic responses from fractured reservoirs in 4D monitoring - Part 1: Seismic responses from fractured reservoirs in carbonate and shale formations”, Geophysics, 86:6 (2021), M211–M232  crossref  isi
    10. Katerina Beklemysheva, Alexey Vasyukov, Alexey Ermakov, “Grid-characteristic numerical method for medical ultrasound”, J. Phys.: Conf. Ser., 2090:1 (2021), 012164  crossref
    11. Katerina A. Beklemysheva, Igor B. Petrov, Smart Innovation, Systems and Technologies, 214, Smart Modelling For Engineering Systems, 2021, 287  crossref
    12. Vladimir Leviant, Naum Marmalevsky, Igor Kvasov, Polina Stognii, Igor Petrov, “Numerical modeling of seismic responses from fractured reservoirs in 4D monitoring — Part 1: Seismic responses from fractured reservoirs in carbonate and shale formations”, GEOPHYSICS, 86:6 (2021), M211  crossref
    13. Katerina A. Beklemysheva, Smart Innovation, Systems and Technologies, 214, Smart Modelling For Engineering Systems, 2021, 149  crossref
    14. A. V. Favorskaya, I. B. Petrov, “Grid-characteristic calculation of multistorey buildings destruction”, Math. Models Comput. Simul., 12:6 (2020), 897–906  mathnet  crossref  crossref
    15. V. Golubev, A. Shevchenko, I. Petrov, “Simulation of seismic wave propagation in a multicomponent oil deposit model”, Int. J. Appl. Mech., 12:8 (2020), 2050084  crossref  isi
    16. A. Favorskaya, I. Petrov, “A novel method for investigation of acoustic and elastic wave phenomena using numerical experiments”, Theor. Appl. Mech. Lett., 10:5 (2020), 307–314  crossref  isi
    17. N. Khokhlov, P. Stognii, “Novel approach to modeling the seismicwaves in the areas with complex fractured geological structures”, Minerals, 10:2 (2020), 122  crossref  adsnasa  isi
    18. N. I. Khokhlov, V. O. Stetsyuk, I. A. Mitskovets, “Overset grids approach for topography modeling in elastic-wave modeling using the grid-characteristic method”, Kompyuternye issledovaniya i modelirovanie, 11:6 (2019), 1049–1059  mathnet  crossref
    19. N. I. Khokhlov, I. B. Petrov, “Primenenie setochno-kharakteristicheskogo metoda dlya resheniya zadach rasprostraneniya dinamicheskikh volnovykh vozmuschenii na vysokoproizvoditelnykh vychislitelnykh sistemakh”, Trudy ISP RAN, 31:6 (2019), 237–252  mathnet  crossref
    20. D. N. Tumakov, E. V. Rung, A. V. Danilova, “Solving the problem of elastic waves diffraction by a fluid-saturated porous gradient layer using a second-order finite-difference scheme”, Lobachevskii J. Math., 40:10, SI (2019), 1739–1752  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:375
    Full-text PDF :102
    References:74
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025