Abstract:
The equilibrium problem for a membrane containing a set of volume and thin rigid inclusions is considered. A solution algorithm reducing the original problem to a system of Dirichlet ones is proposed. Several examples are presented in which the problem is solved numerically by applying the finite element method.
Key words:
membrane with rigid inclusions, FEM, variational method.
Citation:
E. M. Rudoy, “Numerical solution of the equilibrium problem for a membrane with embedded rigid inclusions”, Zh. Vychisl. Mat. Mat. Fiz., 56:3 (2016), 455–464; Comput. Math. Math. Phys., 56:3 (2016), 450–459
\Bibitem{Rud16}
\by E.~M.~Rudoy
\paper Numerical solution of the equilibrium problem for a membrane with embedded rigid inclusions
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 3
\pages 455--464
\mathnet{http://mi.mathnet.ru/zvmmf10359}
\crossref{https://doi.org/10.7868/S0044466916030170}
\elib{https://elibrary.ru/item.asp?id=25678776}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 3
\pages 450--459
\crossref{https://doi.org/10.1134/S0965542516030155}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376028100012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971333806}
Linking options:
https://www.mathnet.ru/eng/zvmmf10359
https://www.mathnet.ru/eng/zvmmf/v56/i3/p455
This publication is cited in the following 3 articles:
Evgeny Rudoy, Sergey Sazhenkov, “Imperfect interface models for elastic structures bonded by a strain gradient layer: the case of antiplane shear”, Z. Angew. Math. Phys., 76:1 (2025)
E. M. Rudoy, H. Itou, N. P. Lazarev, “Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem”, J. Appl. Industr. Math., 15:1 (2021), 129–140
E. M. Rudoy, N. P. Lazarev, “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, J. Comput. Appl. Math., 334 (2018), 18–26